Skip to main content Skip to navigation
Washington State University Dairy News

June 2021 WSU Dairy Newsletter

It has Been a Great Ride, Please Stay in Touch

Man crouches near calves in a barn. Feed rail in background.

Today is my last day with WSU before I begin my emeritus (retired status) with WSU. I plan to continue to be a resource upon request to the dairy industry, serve on a graduate guidance committee, and stay involved with the National Livestock and Poultry Environmental Learning Community.

It has been a great ride. I have enjoyed the challenge of a very progressive dairy industry in Washington State with dairy producers that have always been at the forefront of innovation and adoption of new management approaches and technologies.

What has been the most important to me has been the relationships that I developed with dairy producers and allied agriculture industry, and WSU staff, colleagues, graduate students, undergraduate students.

June 1, 1984, 37 years ago I started as an assistant professor with the department of Animal Sciences and located at the Western Washington Research and Extension Center, same place as WSU-Puyallup Research and Extension Center, just a different name.

My position began as a 100 % research appointment, and morphed to a partial extension appointment until ~ 2000 when I officially began a 50:50 research:extension appointment as a livestock nutrient management specialist. In 2017 a teaching responsibility was added with the assignment for being Cooperative University Dairy Students (CUDS) faculty advisor.

Please don’t hesitate to reach out with a question.

Amber’s Top Ten Tips: Calves and Heat Stress

Cows line up under shade structures.

Record-breaking hot weather is here. We know that heat stress causes decreases in feed intake, milk production, and reproduction in cows, but how does this hot weather affect your calves? My research team completed a study that aimed to help answer that very question.

We are reminded every day that our calves are the future of our dairy and we do everything we can to ensure they are healthy, especially when environmental conditions pose a challenge to calf well-being. Below are some interesting facts about calves and heat stress. It is a compilation of information from our study (Young et al., 2020), as well as others in this field of science:

  1. Temperature-humidity Index (THI)

    As a reminder, THI is commonly used to gauge the severity of heat stress dairy cows experience under specific environmental conditions (ambient temperature and relative humidity). THI ≥ 68 is categorized as heat stress (Collier et al., 2009). It is important to note that THI guidelines are currently unavailable for calves. If you are interested in calculating the THI on your farm, the equation is pretty simple:

    THI = ambient temperature – [0.55 – (0.55 × relative humidity/100)] × (ambient temperature – 58.8)

    Ambient temperature is recorded in Fahrenheit and relative humidity is recorded as a percentage.

  2. Temperatures within Calf Housing

    We compared the THI inside standard calf hutches placed outdoors against calf stalls located in a three-sided barn during the summer months. During the hottest hours of the day (12 PM – 5 PM), the THI was 74 inside the hutches and 73 within the stalls. Meanwhile, the THI in the ambient environment during the hottest hours was 84 (Young et al., 2020).

  3. Calf Body Temperatures

    Calves housed in hutches during our study had higher body temperatures than calves housed in stalls, with the highest temperature recorded as 104°F. These temperatures were recorded by attaching a temperature-recording device to the underside of each calf’s tail (Young et al., 2020).

  4. Upper Critical Temperatures for Calves

    Newborn calves experience heat stress when environmental temperatures exceed 79°F and one-month-old calves experience heat stress at temperatures above 73°F (Wathes et al., 1983).

  5. Serum Cortisol Concentrations

    When we experience stress, our cortisol concentrations increase. This is also true for calves. Average cortisol concentrations were 17% higher in calves housed in hutches than calves housed in stalls during our study; however, cortisol concentrations were highly variable (Young et al., 2020). This is a good reminder that each calf has a different tolerance level for hot weather, so we need to watch all calves closely.

  6. Shade for Calf Hutches

    Providing a sun shade net over calf hutches during hot weather (101.8°F max temperature) decreased temperatures within the hutches from to 110.7°F to 99.5°F (Kovács et al., 2019).

  7. Salivary Cortisol Concentrations

    Calves housed in non-shaded hutches had salivary cortisol concentrations 47% higher than calves housed in shaded hutches (Kovács et al., 2019).

  8. Calf Hutch Ventilation

    When comparing four different types of hutches during a summer in Texas, one study reported that raising the back of a hutch by 6 inches caused a 4% decrease in THI within the hutch (Reuscher et al., 2019).

  9. Fans to Improve Air Flow

    Installing fans over shaded group pens increased air flow by 94%. Calves housed in pens with fans consumed up to 19% more milk replacer and concentrate, on a dry matter basis, than calves housed in pens without fans (Dado-Senn et al., 2020).

  10. Temperature during Calving and Calf Growth

    Calves born when THI > 75 had pre-weaning gains that were 13% lower than gains in calves born when THI < 70 (López et al., 2018).

I hope this information is helpful as we enter an alarmingly hot summer. Please remember to keep a mindful eye on your cows, employees, and yourself. Stay well!

Waste to Worth 2022—National Conference Hosted by the Livestock and Poultry Environmental Learning Community

USA outline wrapped in recycling arrows. "Waste to Worth 2022"You are invited to participate in the 2022 Waste to Worth Conference (W2W2022) and to consider presenting on a topic that is important to sustainability in animal agriculture.

W2W2022 welcomes oral, poster, panel, and workshop presentation proposals focused on applied solutions related to animal manure management and protecting the environment. Graduate students are encouraged to submit and participate in a poster presentation competition.

To submit and abstract click on Submit an Abstract.

March 2021 WSU Dairy Newsletter

Dairy Safety Network Available: Let’s Talk Safety

Screenshot of Dairy Safety Network webpage header

Most people don’t consider safety to be an interesting topic. Every time I try to make small talk with the person standing (6 feet) behind me in the checkout line, I lead with a comment about safety. Needless to say, I am often met with looks of distaste. I guess I should just stick with something “safer” like the weather.

Why do so many people shy away from talking about safety? It’s something we all deeply care about, but we just can’t seem to accept it as a centerpiece to our conversations. No one wants to see someone get injured and none of us want to get injured, so it seems like we all have common ground. Talking about safety doesn’t have to be scary and it doesn’t hurt. Nevertheless, not talking about it could hurt. Talking about safety on a farm is especially important. Dairy farmers, managers, and employees need to feel comfortable having frank discussions about safety. This is one reason why I partnered with the Washington State Dairy Federation and the University of Washington to develop an online resource to promote safety on dairies, and to provide you with the tools you need to talk about safety on your farm. The project is funded by the Washington State Department of Labor and Industries.

This new, free online resource is the Dairy Safety Kit. Looking for fresh ideas for your safety meeting? Check the Dairy Safety Kit. Want to offer cattle handling safety training on your dairy? Find a training module in the Dairy Safety Kit. Need to develop an accident prevention plan? Create one in the Dairy Safety Kit. Perhaps most importantly, searching for a network of safety-oriented people to share ideas with and discuss experiences? The Dairy Safety Kit offers a Dairy Safety Network designed for sharing information and learning from one another.

Let’s talk safety. If you are interested in gaining access to the Dairy Safety Kit, please visit us at https://dairy-safety.thinkific.com/ to request access. If you are interested in learning more about the Dairy Safety Network, including upcoming Leaders Enabling Advanced Dairy Safety (LEADS) animal safety trainings, please contact me. I’d much rather talk about safety than the weather.

Forage Management and Growing Alternative Fodders on Small Acreage

Maynard Mallonee is an organic dairy producer in Curtis, Washington. He is a graduate of WSU and was a member of the Washington State University Cooperative Dairy Students (CUDS). Maynard has a passion to trying new technologies and management techniques. His herd is milked with robots and cows have state of the art animal housing for cow comfort and health. Each year he selects a new forage management practice to evaluate. His overall goal is to produce the most amount of high quality forage at his dairy and minimize purchase of forages off farm. Go to the following link to listen as Maynard shares what forage and root crops are working best for him.

December 2020 WSU Dairy Newsletter

Pacific and Mountain West Nutrient Cycling, Soil Health, and Food Safety Conference a Success

The Pacific and Mountain West Nutrient Cycling, Soil Health, and Food Safety Conference was held virtually via Zoom October 27, 28, and 29, 2020. The conference was funded by Western SARE and hosted by five Northwestern States (WA, OR, ID, MT, and UT). Over 60 oral presentations were made from speakers in the region and across the US. In addition, video case studies were presented on innovative methods of manure management, and cropping and grazing practices.

Session Topics included:

  • Nexus of Soil Quality and Water Quality
  • Pasture and Rangeland
  • Nutrient Recovery Technologies
  • Soil Quality Nutrient Management
  • Compost, Biosolids, and Chars
  • Nutrient Management, Cover Crops and Environmental Monitoring
  • Food Safety

All presentations and case studies were recorded and can be found at https://extension.wsu.edu/pmwncfsc/conference-agenda/

Value of Dairy Manure Highlighted in Case Study Videos

Dairy manure continues to gain popularity as a good source of nutrients as well as for it soil quality improvement qualities. Two case study videos document the developing relationships in Western and Eastern Washington between dairy farmers and vegetable and fruit producers.

The Nutrient Cycling Connection between the Dairy and Berry Farmers in Washington State

Berry growers in Whatcom County are finding that dairy manure is a good source of nutrients for production of raspberries.

Use of dairy compost on Eastern Washington Vegetable and Fruit Crops

Vegetable and fruit producers in Eastern Washington are finding that composted dairy manure is an excellent source of nutrients for their crops.

Washington State Gains a New Dairy Fanatic

Holiday Greetings from the Progar household! It is with much joy that I introduce you to our new family member, Luke Michael. He was born on June 27, 2020 at 9:40 PM. The little guy weighed in at 5 lb. 12 oz. and was 20.5 inches. From my family to yours, Happy Holidays!

Baby wearing Cheesehead shirt

June 2020 WSU Dairy Newsletter

Cooperative University Dairy Students Adapt to Challenge of COVID

CUDS students attend a meeting on Zoom.CUDS (Cooperative University Dairy Students) is a student run group dedicated to running a successful dairy farm while also providing a safe space to teach and learn. “Where the text meets the bucket” is a quote often used to describe the way CUDS members learn. We rely on the community of wonderful staff and faculty at WSU to help guide us on our journey. Anyone who has ever stepped foot on a dairy farm before knows that things change every hour of every day. Simple changes such as fluctuation in milk produced has a domino effect all the way to affecting the amount of money we have to pay our expenses. A very big change that CUDS has had to deal with an along with the rest of the globe is the Covid-19 pandemic. Many parts of society have changed or been shut down due to the pandemic. CUDS was deemed essential by Washington State University administration, meaning we were able to continue working and milking our herd but that does not mean things didn’t change on the dairy. CUDS had to adapt to new rules and regulations set in place by the state and the university in order to stay working and keep everyone safe:

Meetings

All meeting that were previously held in person were converted to online meeting through zoom.com. While switching to online was a bit of a challenge at first, we quickly figured out how to manage the meetings and hold the same standards that were enforced in our in-person meetings. We never leave a question unanswered or a comment unsaid by working together to make sure that all topics are still discussed as thoroughly as ever before.

Shift caps

Generally, when working a shift, the more members there the better because it got the work done faster and was a great way to bond with the team members. While bonding with team members is more important now than ever before because of the distancing, we decided to limit the number of members on a shift to two people to keep our members safe as well as make it easier to distance ourselves while still being able to work together on a shift. Limiting the number of people on a shift at a time would hypothetically extend shift time but our members really worked together to make sure that they are doing their work both effectively and safely. Shift caps have not stopped our members from bonding and in fact it taught them to work better as a team in order to get work done and keep each other safe

Work parties

Work parties are a very important part of CUDS in which the whole group usually meets on a weekend day at the dairy to clean and do chores that need to be done to keep our herd happy and healthy. Work parties are also a great time for the team to work together, bond, and check-in with one another to stay connected. In response to the pandemic CUDS came up with a way to still get all the work done but without putting the group at risk of spreading or contracting Covid-19. The work party tasks were split into separate time slots throughout the day in which one to two of the members went to the dairy to get the task done. As well as going in smaller groups at different times, CUDS members also had to stay in contact with one another to make sure that the groups were not out at the dairy at the same time and therefore defeating the purpose of social distancing. Also, members had to make sure that at least one member knew how to do the task that they signed up for and how to teach it if necessary. CUDS handled these new challenges with ease and made sure that the dairy was still cleaned and our herd was still cared for just as effectively.

Learning opportunities

CUDS focuses on being an experiential learning environment. This is usually done by having groups meet at the dairy to teach and show the members what to do in many different situations. Since groups are no longer an option, we tried to pair one member with the knowledge with one member that wants to learn and we rotate as much as possible so that each of the members still has the same opportunities to learn. We also usually take field trips to other farms around Washington as a way to learn from others and see other dairy techniques. We gave up our spring trip this year to keep both our team safe, as well as other farmers. We have been very understanding of other dairy farmers keeping their distance at a time like this and look forward to meeting with them as soon as it is safe.

Amber’s Top Ten Tips: Impact of heat stress on dairy cattle well-being

It has been an unpredictable year so far, including the weather. Regardless of when the hot weather decides to hit, our best defense is to be prepared. We know that heat stress causes decreases in milk production and alters cow behavioral patterns, but what are some of the less known impacts of heat stress on dairy cattle well-being? Below are some interesting study results you may want to consider when deciding how to manage heat stress on your dairy.

  1. Dry matter intake.

    During a 45 day dry-off period, cows that received cooling measures during the entire dry period had an almost 10% higher dry matter intake than cows that received cooling measures for only the first half of the dry period (Fabris et al., 2019).

  2. Immune system cytokines.

    Cows housed in a heat stress environment (temperature-humidity index > 68) had higher plasma concentrations of some key immune system cytokines. Higher concentrations of these cytokines (IL-1β, IL-6, IFN-ꝩ, and TNF-α) indicate that heat stress causes an inflammatory response in the cow’s body (Chen et al., 2018)

  3. Mucosal defense system.

    Housing cows in a heat stress environment also causes a stress-induced activation of the mucosal defense system in lactating cows (Koch et al., 2019). Of course, the more energy the cow’s system uses to cope with heat stress, the less energy that is available for milk production.

  4. In utero heat stress and calf immunity.

    Calves exposed to in utero heat stress have lower rates of peripheral blood mononuclear cell (PBMC) proliferation than calves not exposed to in utero heat stress (Tao et al., 2012). This effect can persist until the calves reach 56 days of age. PBMCs are the cells that make up the immune system, in which a low proliferation rate puts the calf at a health risk.

  5. In utero heat stress and calf growth.

    Newborn calves that experienced in utero heat stress have lower plasma insulin, prolactin, and insulin-like growth factor-I concentrations than calves that did not experience in utero heat stress (Guo et al., 2016). Insulin, prolactin, and insulin-like growth factor-I are key components of calf growth and development.

  6. In utero heat stress and calf health.

    Cows that were cooled during the dry period had heavier calves that also had lower body temperatures at calving than calves from cows housed under heat stress conditions during the dry period. Cooled cows also had calves that were more efficient at absorbing IgG from colostrum and gained 0.44 lb/day more than calves from heat-stressed cows (Laporta et al., 2017).

  7. In utero heat stress and calf IgG absorption.

    Calves born to cows exposed to heat stress during the dry period have lower serum IgG concentrations and higher serum cortisol concentrations than calves born to cows housed in a thermoneutral environment during the dry period (Almoosavi et al., 2020). Remember, cortisol is often referred to as the “stress hormone”.

  8. In utero heat stress affects calf future performance.

    Heifers born to heat-stressed cows produce 16% less milk for the first 35 weeks of their first lactation than heifers born to cooled cows (Monteiro et al., 2016). Almost 20% more heifers from cooled cows reached their first lactation than heifers from heat-stressed cows.

  9. Feed supplements and cow performance.

    Supplements may help cows cope with heat stress. One supplement fed to heat-stressed cows resulted in lower cow rectal temperatures (Fabris et al., 2017). The same supplement fed to cooled cows resulted in 13% higher milk production than heat-stressed cows that were not fed the supplement.

  10. Feed supplements and calf health.

    Feeding the supplement mentioned in #9 to cows during the dry period impacted calf health, depending on whether cooling was provided to the cows (Skibiel et al., 2017). Calf serum amyloid A (protein associated with inflammation) was higher in calves born to heat-stressed cows than cooled cows. Furthermore, neutrophil (a type of immune cell) function at 10 days of age was higher in calves born to cooled cows that received the supplement than cooled cows that did not receive the supplement.

For list of references, please contact Amber

April 2020 WSU Dairy Newsletter

Amber’s Top Ten Tips: Farmer well-being

As I sat down to choose a topic for this article, I couldn’t stop thinking about the difficult times we are currently facing as a society. COVID-19 is affecting all our lives. It pangs me to watch milk being dumped down the drain, while many school-aged children won’t receive milk with their lunch (if they receive a lunch) today because of school closures. It is during times like this that we are pushed to the limits and our well-being is threatened. This is why today’s article will focus on the people that make the dairy industry thrive, YOU. My hope is that the information below will help you realize that you are not alone, your well-being matters, and tools are available to help you improve your well-being.

  1. Prevalence of stress among dairy farmers.

    A survey of 265 Finnish dairy farmers revealed that 42% of the farmers were stressed and 9% of them experienced severe burnout (Kallioniemi et al., 2016).

  2. Prevalence of anxiety and depression among dairy farmers.

    Out of 170 Midwestern U.S. dairy farmers surveyed, 71% of them met the criteria for Generalized Anxiety Disorder and 53% of them met the criteria for Major Depressive Disorder. Personal finances and time pressures were listed as the greatest concerns (Rudolphi et al., 2020).

  3. Farmer well-being influences animal well-being.

    Over 900 Norwegian dairy farmers participated in a study in which farmer well-being was compared to animal well-being. Farmers with lower levels of stress and better well-being had animals with better well-being (cow health, longevity, fertility, etc.; Hansen and Østerås, 2019).

  4. Farming pressures.

    In Wales, 582 dairy and beef cattle farmers identified the top five farming pressures as: finances; weather; tuberculosis; paperwork; and farm management. Farmers who identified finances as the key pressure were more likely to have a lower well-being (Crimes and Enticott, 2019).

  5. Importance of social support.

    Among 121 Irish farmers, increases in financial and non-financial stress caused increases in farmer anxiety and depression. However, farmers with strong social support had less non-financial farm stress, as well as fewer cases of anxiety and depression (Furey et al., 2016).

  6. Coping with farming pressures.

    Thirty-two Canadian male farmers participated in intensive interviews, in which all farmers agreed that work breaks and vacations were crucial coping strategies. Time spent with family was listed as particularly powerful a coping strategy (Roy et al., 2017).

  7. Positive impacts on dairy farmer well-being.

    Finnish dairy farmers identified family, working with cattle, healthy farm animals, a reasonable workload, and a sustainable farm economy as factors that have a positive impact on dairy farmer well-being (Kallioniemi et al., 2018).

  8. Relationship between mental health and physical health.

    A survey of 79 Australian dairy farmers showed that farmers with higher levels of exhaustion and stress experienced lower levels of physical and mental health. On the other hand, farmers who practiced mindfulness had better physical and mental health than farmers who didn’t practice mindfulness (Eddy et al., 2019).

  9. Barriers to seeking help.

    A focus group of Australian farmers, farmers’ partners, and general practitioners emphasized that farming is more than just employment, it is a lifestyle. The focus group stated that seeking help requires time away from work, which is a key barrier. Finances may also present a barrier to seeking help (Vayro et al., 2020).

  10. Role of ag professionals.

    Ag professionals (veterinarians, farm consultants, etc.) have established relationships with dairy farmers. They play a key role in identifying, mitigating, and supporting farmers during difficult times (Stanley-Clarke, 2019).

Remember: you are not alone, your well-being matters, and tools are available to help you improve your well-being.

References

  • Crimes and Enticott. 2019. Assessing the social and psychological impacts of endemic animal disease amongst farmers. Front. Vet. Sci. 6:342.
  • Eddy et al. 2019. Trait mindfulness helps explain the relationships between job stress, physiological reactivity, and self-perceived health. J. Occup. Environ. Med. 61:e12-e18.
  • Furey et al. 2016. The roles of financial threat, social support, work stress, and mental distress in dairy farmers’ expectations of injury. Front. Public Health 4:126.
  • Hansen and Østerås. 2019. Farmer welfare and animal welfare- Exploring the relationship between farmer’s occupational well-being and stress, farm expansion and animal welfare. Prev. Vet. Med. 170: 104741.
  • Kallioniemi et al. 2016. Stress and burnout among Finnish dairy farmers. J. Agromedicine 21 (3): 259-268.
  • Kallioniemi et al. 2018. Job resources and work engagement among Finnish dairy farmers. J. Agromedicine 23:249-261.
  • Roy et al. 2017. “Do it all by myself”: a salutogenic approach of masculine health practice among farming men coping with stress. Am. J. Mens Health 11:1536-1546.
  • Rudolphi et al. 2020. Depression, anxiety and stress among young farmers and ranchers: a pilot study. Community Ment. Health J. 56:126–134.
  • Stanley-Clarke. 2019. The role of agricultural professionals in identifying, mitigating and supporting farming families during times of stress: findings of a qualitative study. Aust. J. Rural Health 27:203–209.
  • Vayro et al. 2020. ‘Farming is not just an occupation [but] a whole lifestyle’: a qualitative examination of lifestyle and cultural factors affecting mental health help-seeking in Australian farmers. Sociol. Rural. 60:151-173.

December 2019 WSU Dairy Newsletter

Donations to CUDS Program Leads to Memorable Field Trip

Group of CUDS students standing in aisle at a dairyAt the beginning of 2019, we held our first ever WSU Cooperative University Dairy Students (CUDS) reunion to celebrate the program’s 41 years of excellence. Former CUDS members, family, and friends gathered to reminisce and share stories about how CUDS impacted them. We also began a fundraising drive for CUDS, in which Dr. Joe Hillers announced he would match up to $5,000 in donations. With the generous support of Dr. Hillers and our donors, we reached our fundraising goal.

For most CUDS members, the only dairy experience they have is from working with the cattle at the WSU Knott Dairy Center. This is one reason why we make CUDS field trips a priority. The CUDS motto is “where the text meets the bucket”, and going on field trips is one way our CUDS members learn first-hand how other farmers manage their dairies. The fundraiser earlier this year allowed us to take CUDS members to four dairies in Western Washington last month. CUDS members learned about the cheese making process at Cherry Valley Dairy, witnessed robotic milkers in action at Paradise Jerseys, explored farmland stewardship practices at Steensma Dairy, and business diversification strategies at Hy-Grass Farms. We visited farmers that use cutting-edge technology and farmers that prefer to keep things simple. The diversity of these farms was incredible, we cannot thank them enough for sharing their time and expertise with us.

We would like to send a special thank you to Dr. Hillers and the donors that made this experience possible for the CUDS members. It was truly memorable.

LEADS Graduates Ready to Teach Safety

LEADS graduates pose in ballroom with their certificates.Teaching safety to employees can be difficult. It is even more difficult to make safety training fun and engaging. Graduates from the Leaders Enabling Advanced Dairy Safety (LEADS) program learned how to help their employees learn safe practices and received tools they can use on their dairy to make safety trainings more effective. The LEADS training is one part of a larger effort to build a Dairy Safety Network in Washington State. It is a collaborative effort among the Washington State Dairy Federation, University of Washington, and Washington State University.

We held two LEADS training sessions in 2019 and will offer two sessions in 2020. During this 4-hour training, participants learned how an effective safety training could help reduce the incidences of the most common cattle-related employee injuries on Washington dairies. Participants also completed leadership training that prepared them to become the teacher. It is a train-the-trainer program designed specifically for dairy owners and managers.

Our LEADS graduates reported that 100% of them learned something new from the training. We hope you can join us for one of our upcoming LEADS training sessions. Upcoming locations include Moses Lake and Lynden. Please contact me at amber.adams-progar@wsu.edu or 509-335-0673 for more information about LEADS.

Funding and support for this project has been provided by the State of Washington, Department of Labor & Industries, Safety & Health Investment Projects.

September 2019 WSU Dairy Newsletter

Cows, Greenhouse Gases, and Nature’s Carbon Cycle

There was an article published in the July 2019 issue of Hoard’s Dairyman entitled “Cattle are part of nature’s carbon cycle”. The title probably didn’t catch your eye, but the content presents a very different picture of the role that dairy cows (and beef cattle) have in regard to greenhouse gases and climate change.

A few excerpts from the paper are:

“…we have seen the media place blame for our changing climate on cattle. For dairy cows in the U.S., this claim cannot be supported by science…”

“Methane is a powerful greenhouse gas that along with carbon dioxide nitrous oxide, and some other compounds in the atmosphere create a blanket around our planet.”

“Without this atmospheric blanket, the earth would be too cold for us to survive.”

“The current problem is that concentrations of these gases are rising, which is thickening the blanket. This leads to an elevation in global temperatures and related climate changes.”

“The methane that cows produce is part of a natural carbon cycle that has been happening since the beginning of life on our planet.”

As shown in the figure below, CO2 is fixed via photosynthesis into plant carbohydrates. The plant carbohydrates are fed to animals where some of the plant carbohydrates get converted to methane and end up in the atmosphere. In about a 12 year period of time most of the methane gets converted back to CO2, and the cycle continues.

Cycle of Carbon dioxide to Plant carbohydrates to Feed for cows to Methane

The step that is basically ignored is that methane is changed back to CO2 within a very short period of time compared to CO2 created by burning fossil fuels.

If you consider that we have less dairy cows now than 50 years ago, that cows are now more efficient, this then translates to less of an impact on atmospheric greenhouse gases today than in prior decades.

Does this mean we shouldn’t adopt practices that reduce methane emissions from cows and manure, certainly not. If new management practices and feeding strategies reduce methane emissions, and are profitable, their adoption should be considered.

Dairy can be part of the answer to atmospheric levels of CO2; let’s make sure that the message to the public is that dairy is a part of the solution, not a part of the problem.

Amber’s Top Ten Tips: Human-dairy Heifer Interactions

Two dairy calvesOne of the most common causes of employee injuries on dairies is cattle. These injuries are a result of human-dairy cattle interactions that went wrong. Providing dairy cattle handling training is the first step in preventing cattle-related injuries. While many different training formats are available, including videos and lectures, which training improves cattle learning? We often focus on providing the most effective training for employees that we forget that training cattle is also beneficial. Cattle are capable of learning during training. I collaborated with two veterinarians at the University of Pennsylvania (Dr. Michaela Kristula and Dr. Meggan Hain) and an expert handling trainer (Dr. Don Höglund) to conduct a study aimed at determining how weaned heifers respond to training. Our research was published last month in the Journal of Extension. Below are some highlights about what we learned:

  1. Heifers are more difficult to handle.

    Minnesota dairy producers reported in a 2014 survey that two of the most difficult groups of cattle to handle are postpartum heifers and calves (Sorge et al., 2014).

  2. Relationship between heifer walking and slipping behavior.

    We conducted a series of handling tests during our study, in which we herded the heifers from one end of their pen to the opposite end of their pen six consecutive times. Heifers that walked during handling were significantly less likely to slip. This is one reason it is important to move cattle slowly. (Adams Progar et al., 2019)

  3. Facing and approaching the handle.

    Heifers that faced the handler during the tests were more likely to approach the handler. If heifers face the handler, then they are not facing the direction of their destination. Approaching the handler is counterproductive to safely moving cattle, as we rely on an animal’s flight zone to move them safely. (Adams Progar et al., 2019)

  4. Facing and approaching the handler.

    It was interesting to note that when heifers faced the handler, they were significantly less likely to walk during handling. (Adams Progar et al., 2019)

  5. Repeat handling affects heifer walking behavior.

    We conducted handling tests over the course of two days so that all 36 heifers were handled on both days. While only 56% of heifers walked during tests on the first day, 75% of heifers walked during tests on the second day. Repeated handling of weaned heifers may help with their handling ease. (Adams Progar et al., 2019)

  6. Facing the handler behavior affected repeated handling.

    Throughout the first day of training, 44% of heifers faced the handler during tests; whereas, 31% of heifers faced the handler during tests on the second day. Once again, repeated handling of weaned heifers may be beneficial. (Adams Progar et al., 2019)

  7. Time of day affects heifer walking behavior.

    Over the course of both training days, all heifers were handled once in the morning and once in the afternoon. Fifty-four percent of heifers walked during the morning tests, and 78% of heifers walked during the afternoon tests. (Adams Progar et al., 2019).

  8. Fewer occurrences of slipping occurred in afternoon.

    Fourteen percent of heifers slipped during handling in the morning and 4% of heifers slipped during afternoon handling tests. Training heifers during the afternoon may be more effective than training during the morning. (Adams Progar et al., 2019).

  9. Type of handling training affects heifer walking behavior.

    Handlers who received the lecture only training had 34% of heifers walk during tests; however, handlers who received the hands-on workshop in addition to the lecture had 81% of heifers walk. (Adams Progar et al., 2019).

  10. Type of handling training affects the occurrences of slipping during handling.

    Handlers who received only the lecture training had 17% of heifers slip during handling, but handlers who received the hands-on workshop had 5% of heifers slip (Adams Progar et al., 2019).

References

  • Adams Progar et al. 2019. Dairy cattle handling Extension programs: training workers and cattle. Journal of Extension https://joe.org/joe/2019august/rb8.php.
  • Sorge et al. 2014. Perception of the importance of human–animal interactions on cattle flow and worker safety on Minnesota dairy farms. Journal of Dairy Science 97:4632–4638.

Do you know a dairy leader interested in a unique training program?

The Leaders Enabling Advanced Dairy Safety (LEADS) program will be offered beginning Fall 2019. LEADS is a train-the-trainer program focused on preventing the most common types of employee injuries caused by cattle on dairies. Participants will complete a 4-hour training that will teach them how to provide an effective cattle handling safety training and prevent cattle-related injuries on their dairies.

Registration will be limited. We are planning to host four training sessions throughout Washington State. More details will be released soon. If you would like more information about this training, please contact Amber Adams Progar at 509-335-0673 or amber.adams-progar@wsu.edu.

Coming Soon: LEADS. An animal handling safety training program for dairy leaders.

June 2019 WSU Dairy Newsletter

Amber’s Top Ten Tips: Cow Behavior and Automated Milking Systems

Interested in automated milking systems? These systems have a lot to offer, but they are not a solution for all dairies. Automated milking systems are an investment. Although several management decisions can determine whether an automated milking system succeeds, understanding cow behavior can also influence a system’s successfulness. Here are some thoughts on how cow behavior may affect the success of an automated milking system:

  1. Stress and milk yield

    When transitioning cows from a conventional system to an automated milking system, milk yield/cow can decrease by 45% during the first 24 hours of the transition, but milk yield should recover within 4 days. Changing a cow’s routine can cause a stress response that suppresses milk letdown. (Jacobs and Siegford, 2012)

  2. Stress-related behaviors during milking

    Vocalization and elimination behaviors occur more frequently when cows are stressed. Although these behaviors increase during milking when cows are transitioning to an automated milking system, vocalizations and eliminations decrease by 84% and 71% within the first 24 hours of the transition. (Jacobs and Siegford, 2012)

  3. Concentrate allocation in automated milking units

    Feeding cows 11 lbs/day versus 1.1 lbs/day of concentrate during milking does not appear to affect the number of voluntary visits to the milking unit. (Paddick et al., 2019)

  4. Automatic feed delivery and cow lying time

    Lying time is important for cows. They will sometimes alter their behavioral patterns by decreasing the amount of time they spend performing other behaviors to allow more time for lying. Feeding cows with an automated feed system 11 times/day versus 6 times/day did not affect the total daily lying time (average of 12 hours/day). (Mattachini et al., 2019)

  5. Use of an automatic herding system

    Engineers from Israel designed an automatic herding system that uses mobile fences to herd cows to the automatic milking unit. This herding system increased milking frequency by 45%, milk yield by 15%, and decreased labor time to fetch cows by 80%. (Drach et al., 2017).

  6. Ratio of cows to automatic milking units

    Milking frequency/cow per day is negatively related to the ratio of cows to automatic milking units. (King et al., 2016)

  7. Feed bunk activity

    With the ability to be milked on their own schedule, cows milked by automatic milking systems typically prefer to eat during the day, avoiding the late evening and early morning hours. It is important to note that environmental stressors, such as heat stress, can affect cow feeding behavior. (Wagner-Storch and Palmer, 2003)

  8. Concentrate content and milking visits

    When compared against a standard concentrate, a barley-oats concentrate fed during milking caused an increase in the number of cow visits to the automated milking unit and a decrease in the number of fetches. (Madsen et al., 2010)

  9. Waiting area

    With the use of control gates, the open waiting area in front of the automated milking unit should be large enough to decrease competition. Dominant cows spend an average of 13 minutes in the waiting area and subordinate cows spend an average of 20 minutes in the waiting area. (Melin et al., 2006)

  10. Automated milking unit exit area

    Cows exiting the automated milking unit require 54% more time to exit the unit if other cows are near the exit gate than if no cows are near the exit gate. (Jacobs et al., 2012)

References

  • Drach et al. 2017. Automatic herding reduces labour and increases milking frequency in robotic milking. Biosyst. Eng. 155:134-141.
  • Jacobs, J. A., and J. M. Siegford. 2012. Lactating dairy cows adapt quickly to being milked by an automatic milking system. J. Dairy Sci. 95:1575-1584.
  • Jacobs et al. 2012. Dairy cow behavior affects the availability of an automatic milking system. J Dairy Sci. 95:2186-2194.
  • King et al. 2016. Associations of herd-level housing, management, and lameness prevalence with productivity and cow behavior in herds with automated milking systems. J. Dairy Sci. 99:9069–9079.
  • Madsen et al. 2010. Concentrate composition for automatic milking systems-effect on milking frequency. Livest. Sci. 127:45-50.
  • Mattachini et al. 2019. Effects of feeding frequency on the lying behavior of dairy cows in a loose housing with automatic feeding and milking system. Animals 9(121).
  • Melin et al. 2006. Cow traffic in relation to social rank and motivation of cows in an automatic milking system with control gates and an open waiting area. Appl. Anim. Behav. Sci. 96:201-214.
  • Paddick et al. 2019. Effect of the amount of concentrate offered in an automated milking system on dry matter intake, milk yield, milk composition, ruminal digestion, and behavior of primiparous Holstein cows fed isocaloric diets. J. Dairy Sci. 102:2173-2187.
  • Wagner-Storch, A. M. and R. W. Palmer. 2003. Feeding behavior, milking behavior, and milk visits of cows milked in a parlor versus an automatic milking system. J. Dairy Sci. 86:1494-1502.

Nitrate: Know Your Units of Measure

Is it nitrate or is it nitrate-nitrogen? Are the units in percent dry matter (% DM), parts per million (ppm), or milligrams per kilogram (mg/kg)?

Testing for nitrate is common practice by dairy farmers. Soil, crops and water may be tested. The nitrate content in soil is used to estimate the amount of nitrogen that will be available for crop growth. The nitrate content in both forage and drinking water are commonly used to monitor the amount of nitrate-N that cows might consume in order prevent nitrate toxicity.

Nitrate testing can seem straight forward and simple. However, the result might be expressed in different forms, leading to confusion. For instance, let’s start with soil. The recommended soil depth to obtain a sample is 1 foot, or in multiples of 1 foot. It is common for the test result to be reported as nitrate-N and expressed as mg/kg, ppm, or pounds per acre. Most fertilizer guides use nitrate-N as the unit of expression when interpreting soil analyses. What if a test result is expressed as nitrate (NO3) rather than nitrate-N (NO3-N)? If so, a conversion factor is needed.

Table 1. Conversion between nitrate (NO3) and nitrate-nitrogen (NO3-N)
To convert To Multiply by
Nitrate (NO3) Nitrate-nitrogen (NO3-N) 0.22
Nitrate-nitrogen (NO3-N) Nitrate (NO3) 4.43

The reason for this conversion is that nitrate molecule weighs 62 grams per mole; the nitrogen content of nitrate is 22.5% of the total weight of the molecule. (Source: R. Smith and M. Cahn, July 30, 2012, retrieved from https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=7744 on June 5, 2019).

A value of 6.9 mg/kg of nitrate-N would be 6.9 × 4.43 = 30.6 mg/kg nitrate.

Let’s start with soil. For dairy forage crops, the recommended soil sampling depth is typically one foot. Most commonly, the test result is reported as nitrate-N and expressed as mg/kg. The lab may also convert the result to pounds per acre. Most fertilizer guides use nitrate-N as the unit of expression when interpreting soil analyses.

An example of conversion of soil test nitrate-N is shown below. This example is from a commercial soil test lab that used a conversion factor of 3.5 to convert mg/kg to lbs/acre. The conversion factor of 3.5 assumes that a one acre-foot sample of soil weighs 3.5 million pounds (3.5 lb per acre-foot = 1 ppm). A very common factor to use is 3.5.

Table 2. Concentration of Nitrate-N in Soil
Depth Nitrate-N (mg/kg) Nitrate
inches mg/kg lbs/acre mg/kg lbs/acre
0-12 6.9 24.26 30.6 107

Can a soil sample be taken at a depth of 0 – 6 inches and the results be translated to a depth of 0 – 12 inches or one foot — NO!

The attempt to use a 6 inch soil sample to represent a 1 foot sample will either over or underestimate the corresponding value for the 1 foot sample.

As an example of underestimating the amount of nitrate-N in one ft of soil with a six inch soil sample, if a sample were obtained from the first 6 inches in the fall after it had started raining, the nitrate in soil may have been pushed to the 7 – 12 inch depth and not accounted.

As an example of overestimating the amount of nitrate-N in one foot of soil with a six inch soil sample, if fertilizer had just recently been surface applied and had not been distributed within the top foot of soil, the nitrate in the top six inches would result in an overestimation of nutrients available to the crop.

All Forms of Nitrogen

The other form of nitrogen available for crop growth is organic nitrogen found in soil organic matter. During a growing season, some of the organic nitrogen present in soil organic matter (OM) will become available for plant growth due to the biological activity in the soil. If the top foot of soil weighs approximately 3.5 million pounds, as previously noted, a soil with 5% OM has 175,000 pounds of OM present in the top foot. For soils up to 5% OM, approximately 20 pounds of nitrogen will become available to the crop for each percent OM. Thus a 2% OM soil will provide approximately 40 pounds of plant available nitrogen per acre each year and a 5% OM soil will provide 100# per acre.

Washington’s Natural Resources Conservation Service (NRCS WA) has supplements to the national Agricultural Waste Field Management Handbook, or AWFMH, Table 11-9.

The table below, taken from an actual soil test, shows the accounting of nitrogen from three sources, nitrate-N, N from OM, and N from ammonia-N. In this soil sample, there was a total of 67 pounds of tested N with 7 pounds of ammonia-N, and 38 pounds of N in OM (1.9 × 20 = 38) and 22 pounds of nitrate-N.

Table 3. Example Soil Test Report
  Lbs/Acre
Ammonium-N mg/kg 2.3 7
Organic Matter W.B. % 1.9 ENR: 38
Depth Nitrate-N Sulfate-S Moisture
inches mg/kg lbs/acre mg/kg inches
0 – 12 6.9 22 9  
Totals 6.9 22 9  
Sum of Tested N: 67 lbs/acre N

Analyzing a forage sample or water sample for nitrate follows the same logic as discussed for soil.

Table 4. Guidelines for Limits of Nitrate in Feeds and Water
Percent (%) NO3 on 100% dry matter (DM) basis Comment
Original Source: Hoard’s Dairyman August 25, 1970.
Less than 0.44% (4,400 ppm) Safe
0.44 to 0.88% (4,400 to 8,800 ppm) Generally safe when fed balanced rations. Best to limit to half of the total dry ration for pregnant animals. In addition, be sure water is low in nitrate.
0.88 to 1.5% (8,800 to 15,000 ppm) Limit amount to less than half of total dry ration. Be sure water is safe. Be sure ration is well fortified with energy, minerals, and vitamin A.
Over 1.5% (15,000 ppm) Potentially Toxic – do not feed
Table 5. Guide of Use of Water with Known Nitrate Content
PPM of NO3 Comment
Original Source: Hoard’s Dairyman August 25, 1970.
Less than 44 Generally regarded as safe for all animals and humans
44 to 88 Questionable or risky for humans, especially children and pregnant women. Safe for livestock unless feed also has high levels.
88 to 176 Considered unsafe for humans. Might cause problems for livestock, especially swine and poultry.
176 to 440 Unsafe for humans and risky for livestock. Be sure feed is low in nitrates and be sure as well balanced ration is fed. Fortify ration with extra vitamin A.
440 to 880 Dangerous and should not be used. General or nonspecific symptoms such as poor appetite are likely to develop. Water apt to be contaminated with other foreign substances. When allowed free-choice to cows on a good ration, acute toxicity not likely.
Over 880 Don’t use. Acute toxicity and some death losses might occur in swine. Probably too much total intake for ruminants on usual feeds.

March 2019 WSU Dairy Newsletter

Working together to build a Dairy Safety Network

Dairy cows standing in hay.
We have exciting news to share! The Washington State Dairy Federation, University of Washington’s Pacific Northwest Agricultural Safety and Health Center, and WSU’s Dairy Cattle Behavior and Welfare program (Dr Adams Progar) are collaborating to make safety training materials more accessible and effective for dairies. Our project has three parts: 1) develop an online interactive safety training toolkit; 2) offer in-person workshops to teach dairy owners and managers how to use the safety training toolkit materials; and 3) create an interactive train-the-trainer program that focuses on teaching employees how to minimize risks associated with cattle-related injuries.

Dairy Safety Training Toolkit

Where do you look for safety training materials? Do you ever struggle to find materials on a specific safety topic? Our online safety training toolkit will hopefully become your go-to for all dairy-related safety topics. One of the best features of this resource is that you will be able to interact with the toolkit moderators and other toolkit users. This system will allow you to provide instant feedback on how the materials can be improved and allows you to incorporate tips from other toolkit users. We are currently working on developing the toolkit and are looking for beta testers. Please let us know if you are interested in helping us out as a beta tester.

In-person Workshops

We held our first workshop at the Agriculture Safety Day on February 5th, 2019. Our topics included on-farm communication, effectiveness of different employee training methods, and farm-to-farm networking to improve safety training materials. If you have any topic suggestions for next year’s Agriculture Safety Day, please let us know.

Train-the-Trainer Program

Several dairy cattle handling training programs are available to you and your employees. Most programs focus on training your employees to safely move cattle. The Train-the-Trainer program we are developing is focused on injury prevention. Our goal is to identify the most common employee injuries that are cattle-related on dairies and design a training that specifically targets how to minimize the risks associated with those injuries. We will train dairy managers/safety coordinators so that they have the tools they need to provide this training to the employees on their dairies. This safety training will be offered in each region of Washington State later this year, so please stay tuned for more information.

Update on Struvite as a Phosphorus Source for Modern Alfalfa Systems

The WSU Livestock Nutrient Management program has teamed up with WSU’s forage specialist Dr. Steve Norberg, and two Washington alfalfa growers to demonstrate struvite’s performance as a recycled phosphorus source for alfalfa. Struvite (6-29-0), also known as magnesium ammonium phosphate, is a medium-release rate fertilizer that is recovered from liquid manure or wastewater. Ongoing research in eastern Washington with 2 field demonstrations and multiple plot studies confirm the findings of previous studies’  that alfalfa fertilized with Struvite has comparable yields and quality to alfalfa fertilized with MAP (11-52-0). We paid close attention to the first cutting’s response to Struvite to see if its lower solubility affected its ability to meet alfalfa’s early growth requirements.

The field demonstrations were on 60-80 acre fields in Moses Lake and Kittitas where we compared Struvite and a Struvite-MAP mixture (70%-30% of P, respectively) to MAP. Struvite alone was applied before a new seeding of alfalfa on Farm 1, while the Struvite-MAP mixture was surface applied to an established stand on Farm 2. Data was gathered from 2 of 3 cuttings at Farm 1 and 4 cuttings at Farm 2 in the first year. Results showed Struvite produced similar alfalfa yields, phosphorus uptake, and quality as MAP (Table 1).

Table 1. Alfalfa hay yields, P uptake, and relative feed value (RFV) from 2018
Yield (tons/acre) Average Tissue P (%)
Farm Fertilizer Total 1st Cut Season 1st Cut Avg. RFV*
*The Relative Feed Value reflects the digestibility and intake potential of feeds, where greater numbers mean better quality.
1 MAP 7.3 2.0 0.28 0.25 181
Struvite 7.3 2.3 0.28 0.24 168
2 MAP 7.5 2.4 0.27 0.26 155
Struvite + MAP 7.1 2.2 0.27 0.28 165

Two simultaneous plot studies (< 1 acre each) were conducted by Dr. Norberg in Prosser to compare agronomic performance of different combinations of Struvite and MAP mixtures on fall and spring planted alfalfa. Plots were randomly fertilized at a constant rate with one of 7 different mixtures of MAP:Struvite (100:0, 75:25, 50:50, 37.5:62.5, 25:75, 12.5: 87.5, 0:100) just before planting, or left as an unfertilized check. The fall-planted alfalfa was cut 5 times in 2018, while spring-planted was only cut 3 times. The source of P, whether MAP or Struvite, did not have a significant effect on yield or P uptake in the first cutting and season-wide, regardless of planting time (Figures 1 and 2).

In short, what we’ve learned so far from the field demonstrations with the supporting data of the plotwork is that Struvite can provide enough P in the first year after fertilization to reach comparable yields and P uptake as MAP. Furthermore, the similarity in the first cutting after a new seeding in both studies has shown Struvite is available to meet the immediate needs for early establishment of alfalfa. This ongoing research will continue for a second harvest season this summer to compare the long-term performance of the two fertilizers.

Line graph showing Total Dry Matter Yield First Year (tons/acre) vs. MAP: Struvide Fertilizer Ratio Applied Prior to Planting for Fall- and Spring-Planted Alfalfa
Figure 1. 2018 Accumulative Dry Matter Yield and Average Phosphorus Content in 2018 of Fall* and Spring** Planted Alfalfa Fertilized with MAP and Struvite-MAP mixtures [*Fall planted data shown above is across 5 cuttings for dry matter yield, and 4 cuttings for P concentration.] [**Spring planted data shown above is across 3 cuttings for both DM yield and P concentration]
Line graph showing Total Dry Matter Yield 1st Cut (tons/acre) vs. MAP: Struvite Fertilizer Ratio Applied Prior to Planting for Fall- and Spring-Planted Alfalfa
Figure 2. Dry Matter Yield and Average Phosphorus Content at First Cutting in 2018 of Fall and Spring Planted Alfalfa Fertilized with MAP and Struvite-MAP mixtures.

Pest Bird Management Workshops

Class flyer featuring birds covering piles of feed next to cows.

Pest Bird Management Workshops

Includes on-farm falconry and drone demonstrations.

  • March 6, 2019, 10:00 AM to Noon
    Dutch Mothers Restaurant
    405 Front Street, Lynden, WA
  • March 7, 2019, 10:00 AM to Noon
    Snipes Restaurant
    905 Yakima Valley Highway, Sunnyside, WA

For more information:
Amber Adams Progar
amber.adams-progar@wsu.edu
509-335-0673