Skip to main content Skip to navigation
Washington State University Dairy News

June 2022 WSU Dairy Newsletter

Letter from the Editor

Happy National Dairy Month! This is the month society dedicates to thanking YOU, our dairy farmers, for all your hard work that provides us with wholesome food products. Thank you!

Summer is officially here and the WSU campus in Pullman is fairly quiet. The hustle and bustle of groups of students headed to class is gone, until August. This is the time of year for scientific conferences, research, and preparing for the fall semester. I had the pleasure of attending two conferences so far this summer. The International Committee for Animal Recording (ICAR) Conference was in Montreal this year. Some of the most interesting research I saw focused on using different types of technology to detect the onset of diseases in cattle. This is also an area of research that my lab has been working on lately. I’ll discuss more about this research in my Top Ten Tips article below. The second conference I attended was the International Society for Agricultural Safety & Health Conference, which was held in Fort Collins last week. It was intriguing to learn about the new methods of monitoring on-farm safety and teaching safe practices.

From a research and Extension standpoint, our dairy faculty have multiple projects in the works right now. Dr. Holly Neibergs conducted genomic selection workshops for dairy producers and veterinarians. Dr. Marcos Marcondes is conducting a research trial on calf nutrition, Dr. Martin Maquivar just started a study assessing repeat breeders, and my lab will be installing lasers next month to test their efficacy in deterring birds from the freestall barns. All of us can not wait to share our results with you in upcoming newsletters!

In the meantime, grab a scoop of ice cream and enjoy our June newsletter.

Enjoy!

Amber Adams Progar, amber.adams-progar@wsu.edu

 

 

What’s New in Dairy Science Research?

Callan Lichtenwalter, Ph.D. Student, WSU Department of Animal Sciences

It may not feel like it yet, but summer is here and that means it’s time for another round up of new dairy science research.  Please enjoy the articles I have chosen to write about for the June newsletter.

Importance of Providing Water to Calves [1]

Farmers may not think to provide water to their calves since calves get hydration from milk, and on average in the U.S., calves are not provided water until 17 days of age.  Researchers from New Zealand wanted to understand how providing water to calves receiving different quantities of milk would affect calf feeding consumption and behavior.  Fifty mixed-breed calves were provided with either high milk allowance (10 L/day) with and without water or low milk allowance (5 L/day) with or without water.  As the calves aged, they began to drink more water, and this was more pronounced in calves receiving a high milk allowance.  All calves also ate more hay and calf starter with age, but calves that were provided with water ate more hay than the calves that were not provided with water.  Across the study, there was a small increase in environmental temperature, but this small increase still caused calves to increase their water intake (8% increase for every 1°C (1.8°F) increase).  The results of this study show that providing fresh drinking water to calves can benefit their welfare, particularly on warmer days, and it may contribute to increased consumption of fiber and the development of the rumen.

Finding a Balance with High Concentrate Feeds [2]

High concentrate feeds are important in the dairy industry because they help support the high energetic demands of a lactating cow.  However, when too much concentrate is added to the diet, there can be negative effects on the cow.  A study on Holstein cows from China looked at how a low versus high concentrate diet affected rumen pH, the amount of inflammatory molecules in the blood, and the amount of fat in the milk.  The high concentrate diet fed in the study caused cows to experience sub-acute ruminal acidosis and have higher concentrations of inflammatory molecules in the blood and lower concentrations of fat in the milk than cows on the lower concentrate diet.  From these results we can see that too much concentrate can cause health and welfare issues for the cow and reduce the components in her milk.  If you have concerns about your cows’ diet, contact your nutritionist to see if any adjustments need to be made.

Affects of Different Calf Feeding Methods [3]

Nutrition is extremely important for the growth and development of calves.  Conventional methods suggest providing milk at about 8-10% of calf birthweight to encourage their transition to solid foods.  Researchers from Iran wanted to see if feeding calves using alternative methods would have an impact on their growth or feed intake.  Using 39 Holstein calves, the researchers tested feeding using the conventional method described above, a low milk intake method where milk provided increased until 30 days of age and then decreased until weaning, and a high milk intake method where milk provided increased until 30 days of age and then decreased until weaning.  Calves fed using the high milk intake step-up/step-down method had a greater dry matter intake, starter feed intake, and average daily gain, but were less feed efficient than the calves fed using the other two feeding methods.  If you plan to sell your calves at a few months of age, the high milk step-up/step-down feeding method might work well for you.  Otherwise, the conventional method is probably still your best option, but contact a vet or nutritionist if you have questions or concerns.

[1] Lowe, G.L., M.A. Sutherland, M. Stewart, J.R. Waas, N.R. Cox, and K.E. Schütz. 2022. Effects of provision of drinking water on the behavior and growth rate of group-housed calves with different milk allowances. J. Dairy Sci. 105(5):4449-4460.

[2] Ma, N., J.A. Abaker, G. Wei, H. Chen, X. Shen, and G. Chang. 2022. A high-concentrate diet induces an inflammatory response and oxidative stress and depresses milk fat synthesis in the mammary gland of dairy cows. J. Dairy Sci. 105(6):5493-5505.

[3] Valehi, M.M., G.R. Ghorbani, M. Khorvash, F. Hashemzadeh, H. Rafiee, and J.K. Drackley. 2022. Performance, structural growth, and digestibility by Holstein calves fed different amounts of milk through step-up/step-down or conventional methods. J. Dairy Sci. 105(5):3988-3996.

 

Amber’s Top Ten Tips: Using thermography on dairies

Amber Adams Progar, Dairy Management Specialist, WSU Department of Animal Sciences

Summer is here. Are you ready for the heat? Are your cows ready for the heat? As we know, heat stress has a multitude of negative effects on cattle well-being. Our ability to detect heat stress, as well as other ailments, early is essential for a positive prognosis for our cattle. One method to detect heat stress in cattle is to use thermal imaging to measure eye temperatures in cows. Thermography also shows potential in helping us identify cows with mastitis, foot issues, septic arthritis, and even cows in heat. Below are summaries of studies that tested  using thermography on dairies:

  1. Eye and rectal temperatures

Eye temperatures from thermal images and rectal temperatures in 113 calves were positively correlated, indicating that thermal imaging of eyes could help producers identify calves with a fever (Cossa et al., 2021).

  1. Heat stress identified by eye temperature

Forty cows exposed to mild – severe heat stress conditions displayed increased respiration rates and core body temperatures, as expected. Eye temperatures recorded with thermal imaging showed that left eye temperature readings had better repeatability than right eye readings. The lacrimal sac part of the eye was most closely correlated with the respiration rates and core body temperatures (Shu et al., 2022).

  1. Thermography does not detect feed efficiency

Thermal images of the cheek, right rib, muzzle, left flank, front, front limb, and hind limb were recorded in high-efficiency and low-efficiency cows, but no difference in temperatures was detected between the two groups of cows (Lombardi et al., 2022).

  1. Pasture access does not affect eye temperature

Average eye temperature, as recorded by thermal imaging, was not affected by housing in one study. Twenty-nine cows housed either indoors full-time or with overnight access to pasture did not differ in their eye temperatures (Crump et al., 2022). Eye temperatures tend to be higher when cows experience chronic stress.

  1. Calves with septic arthritis

Eleven calves with septic arthritis had higher skin temperatures, as recorded by thermography, in the areas of their affected joints (Arican et al., 2020).

  1. Detecting estrus

Muzzle and vulva temperatures were recorded via thermal imaging in 10 cows during different stages of estrus. Muzzle temperatures were 8% higher during standing heat than non-estrus. Vulva temperatures were 10% higher during standing heat than non-estrus (Tiwan et al., 2021).

  1. Udder temperature and SCC

Thermal images of all quarters of udders for 28 cows were compared to somatic cell counts. The front udder quarters were the most correlated with somatic cell counts (Machado et al., 2021).

  1. Mastitis detection

Udder surface temperatures for 105 cows were recorded using thermal imaging. Healthy quarters were 90.3 – 90.7°F and quarters with intramammary infections were 91.8 – 92.7 °F (Velasco-Bolaños et al., 2021).

  1. Locomotion score and foot temperature

Over 200 cows in New Zealand were observed for locomotion scoring and thermal images of their hind feet were recorded. For every one-unit increase in locomotion score, mean foot temperature increased by 0.944 degrees (Werema et al., 2021).

  1. Onset of digital dermatitis

My former graduate student conducted a study during the summer of 2020 that aimed to use thermal imaging to detect the onset of digital dermatitis. The intent was to identify cows developing digital dermatitis sooner so we could provide treatment sooner and, ultimately, improve the animal’s prognosis. We found that foot temperature increased by 73% from 16 days prior to diagnosis to the day of diagnosis (Magaña, 2021).

 

Thanks for reading our June newsletter!

We’ll see you in September for our next edition!

March 2022 WSU Dairy Newsletter

Letter from the Editor

Hello Spring! We are wrapping up our first week back from Spring Break at WSU, which means the reality of graduation is setting in for our seniors. The excitement of graduation blends with anxiety over what the future might hold. I had many discussions with students recently about their career plans and noticed that an increasing number of students are seriously considering careers in the dairy industry. Most of these students do not have a background in dairy. This is great news! This means that the Animal Sciences faculty and staff are providing eye-opening experiences for our students, encouraging them to try new things outside their comfort level.

With this great news, I have a request for you. Hands-on experience through internships is one of the most impactful training opportunities we can provide our students. If you have an internship position available, please reach out so we can help you connect with one of our students.

In the meantime, pour yourself a glass of milk and enjoy our March newsletter.

Thank you!

Amber Adams Progar, amber.adams-progar@wsu.edu

 

 

What’s New in Dairy Science Research?

Callan Lichtenwalter, Ph.D. Student, WSU Department of Animal Sciences

 

I am happy to be back with another article that takes new research in the dairy world and brings it directly to farmers in Washington State.  I hope you enjoy the new research I selected for the March newsletter.

Does pair housing calves affect calf health or welfare?

Researchers from Europe wanted to know how housing calves in pairs would affect their health, feed intake, and behavior compared to individually housed calves.  They took calves from 2 to 15 days old and sorted them into groups of 22 individually housed calves and 44 pair housed calves.  Their health and feed intake were measured daily, and one behavioral test was performed to understand how the calves acted in an unknown environment.  The incidence of diarrheal and respiratory illness did not differ between the pair and individually housed calves.  Consumption of milk, calf starter, and average daily gain also did not differ between the two groups of calves.  Based off the behavioral evaluation, the researchers concluded that individually housed calves might be deprived of normal movement behavior in their housing conditions.  From these results, we can conclude that pair housing calves does not impact their health or growth and can be a viable option for dairy farmers interested in increasing natural behaviors in calves.

Does pre-weaning illness in replacement heifers impact reproduction and lactation?

Replacement heifers represent a significant cost on many dairies, so knowing if disease early in life affects reproduction and lactation can help farmers make financially sound decisions when choosing replacement heifers.  Researchers at Michigan State University looked at the health records of 2,272 cows to see if diarrheal disease or BRD had an impact on reproductive success or first-lactation milk production.  Heifer calves with a history of BRD required more inseminations to reach pregnancy and were less likely to produce a calf than those without a history of BRD.  Average daily gain and first-lactation milk production was not affected by a history of BRD.  Heifer calves with a history of diarrheal illness needed more inseminations to achieve pregnancy.  They also had reduced average daily gain and first-lactation milk production.  Therefore, pre-weaning illness does have a negative impact on later reproductive efficiency and lactation in dairy cows.

Can dairy cows be bred to produce less methane?

Methane is a natural product of digestion in cows, but it is also a potent greenhouse gas.  Researchers from the Netherlands wanted to see if including reduction of methane emissions into their breeding strategy would be a feasible practice.  Based on their calculations, selecting for reduced methane emissions along with other production traits can produce healthy, productive cows that produce less methane.  Currently, measuring methane can be difficult and new technology would need to be implemented on farms to accurately select for low methane emitting cows.  How reducing methane emissions impacts other traits is also still unknown.  For now, selecting for cows that produce less methane does not seem like a practical strategy for most dairy farmers, but this may change as more knowledge is gained.

References

Bučková, K., R. Šárová, Á. Moravcsíková, and M. Špinka. 2021. The effect of pair housing on dairy calf health, performance, and behavior. J. Dairy Sci. 104(9):10282-10290.

Abuelo, A., F. Cullens, and J.L. Brester. 2021. Effect of preweaning disease on the reproductive performance and first-lactation milk production of heifers in a large dairy herd. J. Dairy Sci. 104(6):7008-7017.

de Haas, Y., R.F. Veerkamp, G. de Jong, and M.N. Aldridge. 2021. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Anim. 15(1):1-10.

 

 

Responses of rbST injections on high-performance dairy heifers

Anna L. L Sguizzato¹ and Marcos I. Marcondes²

¹Department of Animal Science, Federal University of Viçosa, Viçosa/MG, Brazil

²Department of Animal Sciences, Washington State University, Pullman, WA

 

Have you heard about Holstein × Gyr cattle? Girolando, as it is also called, is a common breed used in many dairy farms in Brazil. This crossbred unites the Holstein milk production with the Gyr rusticity, which is a great complement for pasture-based systems. Bearing this in mind, it is essential to acknowledge that, despite recent efforts to improve requirements, performance, growth, and reproduction, research is still needed to overcome production flaws such as late puberty and detrimental effects of high gain diets on dairy heifers, especially in heifers bred early in their life (11 to 13 months of age).

Based on literature evidence (Weller et al., 2016; Albino et al., 2017a), the exclusive use of nutritional strategies is insufficient to control the negative impacts of high feeding plans in prepubertal dairy heifers. Thus, the use of non-nutritional strategies, as frequent application of recombinant bovine somatotropin (rbST), become a feasible strategy to enhance mammary growth (Radcliff et al., 1997; Sejrsen et al., 2000), or to increase N retention (Crooker et al., 1990) in dairy heifers. Therefore, a study conducted in Brazil, supervised by Dr. Marcondes, aimed to evaluate the use of rbST as an alternative strategy to overcome the detrimental effects of high-performance diets on the development of dairy heifers during pre-puberty.

The study was conducted at the Federal University of Viçosa, where 34 Holstein × Gyr heifers, with a body weight of 218 ± 49 kg and 14 ± 4 months of age were submitted to an 84-day trial to evaluate the use of recombinant bovine somatotropin (rbST) on digestibility, performance, blood metabolites, carcass traits, and mammary development. The 34 heifers were divided into three blocks according to their initial BW, and two treatments (no rbST injections or rbST injections) were randomly assigned to the animals within each block. Heifers received a diet formulated to achieve an average daily gain of 1 kg, according to the NRC (2001). In addition, every animal in the rbST treatment received rbST shots (500 mg of recombinant bovine somatotropin – Boostin®, Merc Animal Health) every 14-day. To mimic the stress suffered by these heifers, the no rbST animals received saline injections (sodium chloride, 0.9%), as a placebo, on the same days.

The rbST treatment did not influence any of the variables evaluated on the digestibility trial. Regarding performance, final BW and growth were not affected by treatments. However, the serum IGF1 was higher for rbST animals, which resulted in greater carcass traits and mammary gland development.

For carcass, rbST heifers presented a 25% increase in lean tissue deposition (Figure 1). In addition, we observed an increase in parenchymal tissue for the mammary gland and a reduction in fat pad tissue for rbST heifers (Figure 2). It may seem different at first look, but we aim to reduce pixel values for parenchyma and fat pad when evaluating mammary gland ultrasound results. The explanation is simple. In ultrasound, darker areas – lower pixel – represent structural or secretory tissues, as the parenchyma. On the other side, brighter areas – higher pixel – represent reservoirs tissues, as the adipose tissue. Thus, the reduced pixel value found for parenchyma represents greater secretory tissue deposition, and the reduced pixel value seen for the fat pad represents reduced adipose tissue deposition in the gland. If you still have questions about this analysis, check the companion paper written by Albino et al. (2017b) and learn more about this technique.

Figure 1. Representation of carcass ultrasound results. A – Carcass ribeye area between treatments. B –  Carcass ribeye area and backfat thickness among days. Differences were considered when P – the value was ≤ 0.05. Adapted from Sguizzato et al., (2022).

 

Figure 2. Representation of mammary gland ultrasound results. Differences were considered when P – value ≤ 0.05. Adapted from Sguizzato et al. (2022).

Moreover, to confirm the results obtained for the mammary gland, we observed reduced expression of IGFBP3 on mammary tissue of rbST heifers (P = 0.023). The IGFBP3 is a major IGF binding protein found in the bovine mammary gland, which can exert dependent or independent effects on cell growth, proliferation, and apoptosis, depending on the stimulus. However, according to our overall findings, we could associate the reduction in IGFBP3 expression with the increased IGF1 serum concentration on rbST heifers, resulting in greater parenchyma growth. Therefore, our study proved the efficacy of rbST as a non-nutritional strategy to improve mammary gland development and lean carcass gain of Holstein × Gyr heifers submitted to high-performance management. Nevertheless, a deeper investigation is still needed to understand the absence of the expected responses to the other variables evaluated and the efficacy of this technology with purebred Holstein heifers.

References

Albino, R.L., A.L. Sguizzato, K.M. Daniels, M.S. Duarte, M.M. Lopes, S.E.F. Guimarães, M.M.D.C.A. Weller, and M.I. Marcondes. 2017a. Performance strategies affect mammary gland development in prepubertal heifers. J. Dairy Sci. 100:8033–8042. doi:10.3168/jds.2016-12489.

Albino, R.L., S.E.F. Guimarães, K.M. Daniels, M.M.S. Fontes, A.F. Machado, G.B. dos Santos, and M.I. Marcondes. 2017b. Technical note: Mammary gland ultrasonography to evaluate mammary parenchymal composition in prepubertal heifers. J. Dairy Sci. 100:1588–1591. doi:10.3168/jds.2016-11668.

Crooker, B.A., M.A. McGuire, W.S. Cohick, M. Harkins, D.E. Bauman, and K. Sejrsen. 1990. Effect of dose of bovine somatotropin on nutrient utilization in growing dairy heifers. J. Nutr. 120:1256–1263. doi:10.1093/jn/120.10.1256.

Radcliff, R.P., M.J. Vandehaar, A.L. Skidmore, L.T. Chapin, B.R. Radke, J.W. Lloyd, E.P. Stanisiewski, and H.A. Tucker. 1997. Effects of Diet and Bovine Somatotropin on Heifer Growth and Mammary Development. J. Dairy Sci. 80:1996–2003. doi:10.3168/jds.S0022-0302(97)76143-5.

Sejrsen, K., S. Purup, M. Vestergaard, and J. Foldager. 2000. High body weight gain and reduced bovine mammary growth: Physiological basis and implications for milk yield potential. Domest. Anim. Endocrinol. 19:93–104. doi:10.1016/S0739-7240(00)00070-9.

Weller, M.M.D.C.A., R.L. Albino, M.I. Marcondes, W. Silva, K.M. Daniels, M.M. Campos, M.S. Duarte, M.L. Mescouto, F.F. Silva, and S.E.F. Guimarães. 2016. Effects of nutrient intake level on mammary parenchyma growth and gene expression in crossbred (Holstein × Gyr) prepubertal heifers. J. Dairy Sci. 99:9962–9973. doi:10.3168/jds.2016-11532.

 

 

Amber’s Top Ten Tips: Consumer Perceptions

Amber Adams Progar, Dairy Management Specialist, WSU Animal Sciences

 

Have you ever scratched your head and wondered where some of the common misperceptions about dairy farming originated? I spend a great deal of time pondering this question. As the number of dairy farms decreases, the number of people with connections to, and an understanding of, dairy farming will also decrease. I thought it might be intriguing to look into dairy consumer perceptions about dairy farming and dairy products from a United States and global perspective.

Below are some highlights from recent articles that I thought were interesting:

  1. Ranking Sustainable Practices

Over 5,000 consumers from six European countries were asked to rank, in the order of importance, three practices: agroforestry (integration of animals and trees on the same plot of land); prolonged maternal feeding (calves can suckle directly from their mothers for the first 3–5 months after they are born); and alternative protein source (use of home-grown protein crops, such as lupins, beans and peas, as animal feed). Prolonged maternal feeding was ranked #1 by 42.1% of consumers; whereas, agroforestry and alternative protein source were ranked #1 by 33.3% and 24.6% of consumers, respectively (Naspetti et al., 2021).

  1. Intent to Purchase Based on Sustainable Practices

The same consumers described in #1 above were also asked to rank their intent to purchase dairy products that were made on farms that used agroforestry, prolonged maternal feeding, or alternative protein sources. Consumers favored products made from farms that used agroforestry and prolonged maternal feeding practices, but using alternative protein sources was not as appealing (Naspetti et al., 2021).

  1. Label Claims can Make a Difference

A survey sent to 900 United States dairy consumers asked participants to rank the importance of 63 attributes/label claims to the sustainability, naturalness, or healthiness of dried dairy products. The label claim “environmentally sustainable practices” was most often perceived as sustainable, while “no artificial sweeteners, flavors, or colors” was most often perceived as healthy (Schiano et al., 2021).

  1. Antibiotic Use on Dairies

One survey of 983 adults in the United States showed that 90.7% of respondents thought antibiotic use on dairies posed some threat to human health. Additionally, 71.5% of respondents claimed they would be willing to pay more for milk from farms that do not use antibiotics (Wemette et al., 2021).

  1. What Makes Frozen Desserts Healthy?

Over 1,000 ice cream and frozen dessert consumers reported that labels such as “naturally sweetened”, “reduced sugar”, “no added sugar”, and “all natural”, as well as a short ingredient list, indicated that a frozen dessert was “healthier” (Sipple et al., 2022).

  1. Animal Welfare Concerns

A survey of 409 Brazilian dairy consumers revealed that 48.7% of respondents thought cows suffer on dairy farms. The three most common concerns were movement restriction, cow-calf separation, and excessive production or reproduction (Comin et al., 2022).

  1. Precision Livestock Farming

Consumer participants from three European countries expressed concern that data from precision livestock farming systems were vulnerable and could be misused in cyber-crimes. They also expected precision livestock farming to improve animal health and welfare (Krampe et al., 2021).

  1. Gene-editing to Improve Animal Welfare

In Brazil, 864 citizens participated in a survey about using gene-editing to improve animal welfare. Sixty percent of respondents stated that using gene-editing for increased muscle growth was not acceptable; whereas, 40% of respondents stated using gene-editing to improve heat resistance or increase polled cattle was also not acceptable (Yunes et al., 2021).

  1. Cattle Housing Systems

Over 3,600 survey respondents from eight European countries were asked to rank four different dairy cattle housing systems. Over half of respondents ranked compost bedded barns as the best housing for health, space, and comfort for cows (Waldrop et al., 2021).

  1. Animal Welfare Influences Buying Decisions

In Italy, 69% of 969 consumers reported they pay attention to animal welfare at the time of purchasing dairy products, and they mostly acquire information about animal welfare through the mass media (Rubini et al., 2021).

 

As we near June Dairy Month, let’s make a concerted effort to find new ways to help more people feel connected to our industry. Share your story, it’s a good one!

 

 

2022 Class of CUDS Members Ready to Take the Helm

Amber Adams Progar, Copperative University Dairy Students (CUDS) Advisor

 

And just like that . . . a new cohort of CUDS members are trained and ready to manage the herd. We received a phenomenal pool of applicants and conducted interviews last semester. New members started training this past January and completed their training a couple of weeks ago. It is my pleasure to introduce you to our class of 2022.

Andrew Bartelheimer – President

Avery Ahearn – Reproduction

Katie Beckner – Milk Quality & Udder Health

Usha Caldwell – Finances

Holly Guest – Public Relations

Alyssa Hawley – Calves, Heifers, and Dry Cows

Doan Hoang – Calves, Heifers, and Dry Cows

Alissa Jilk – Reproduction

Rania Kraus – Sire Selection

Kaycie Leslie – Herd Health

Mary Morse – Nutrition/Feed Management

Olivia Poncia – Cow Comfort

Heston Richmond – Herd Health

Lauren Sandoval – Drugs, Supplies, and Records

 

We are excited to see what the next year brings for the CUDS members and herd. Welcome to our new members!

 

Thanks for reading our March newsletter! We’ll see you in June for our next edition!

December 2021 Dairy Newsletter

Letter from the Editor

I hope this newsletter finds you excited for the holidays and hopeful for the New Year. This past year was an unprecedented one full of historical moments, some we cherish and some we hope to forget. In spite of the challenges we faced this year, the strength of the Washington State dairy industry never waned. In fact, some of my favorite moments from this year occurred at the Annual Washington State Dairy Conference this month. Watching everyone enjoy each other’s company and exchange a bit of banter was priceless. Witnessing how the Washington dairy industry family pulled together to help each other during the latest flood disaster reminded me why I enjoy my job so much. The people in our industry bring joy to my work.

This joy was similar to the joy our WSU Animal Sciences students experienced when they returned to campus for in-person classes this semester. As you know firsthand, skills in Animal Sciences are best taught hands-on. Teaching a student how to milk a cow just isn’t the same when you are trying to explain it over a video conference. We are so grateful we were able to offer our classes the way they were intended to be offered, in-person and hands-on. The semester has now come to a close and the campus is once again quiet. I am hopeful that the new semester will open new doors for our students, including opportunities to meet you and learn about your experiences.

Time is invaluable. Thank you for setting aside time to read our newsletter. We hope you enjoy the articles and find the information to be helpful. If you have any suggestions for future article topics, please send them to me at amber.adams-progar@wsu.edu. Happy Holidays!

Amber Adams Progar, Associate Professor and Dairy Management Specialist

Cooperative University Dairy Students enjoying the 2021 Washington Dairy Conference

A Note from the Animal Sciences Chair

At last, this December there was an opportunity to meet in person with members of the WA Dairy Federation during the annual meeting at Wolf Creek Lodge, Grand Mound, WA. Having served as Chair of Animal Sciences at WSU for slightly over a year now, this was my first opportunity to attend this event and meet the great people. While the devastating impacts of the recent floods were certainly a topic of conversation and concern, there was also plenty of optimism, progressive ideas and shared wisdom. For me personally, I experienced great enthusiasm for the proposed efforts with respect to sustainability initiatives, carbon credits and market growth. WSU Animal Sciences intends on contributing to these efforts and advancements as an important component of our land-grant mission. I was overwhelmed by the welcome and support by members; as so many approached and introduced themselves and importantly expressed their willingness to work with WSU. We have a vision to upgrade our Knott Dairy Center, provide more internships for our undergraduate COUGS, grow our graduate program and maximize our research. It is important that WSU Animal Sciences and our dairy industry partners strategize on where we can proceed as a unified team, vested in the sustainable dairy industry. Thank you all, for your hospitality, I look forward to learning from each of you and building upon our long-standing commitments to one another. Happy holidays, and best wishes for an exceptional 2022.

Gordon K. Murdoch, Professor & Chair WSU Animal Sciences

 

Estrus detection: an overview of technologies used in dairy farms and their effects on productivity and profitability

Marcos I Marcondes1, Erollykens F. Santos2, and Lucilaine M. Veline2

1Department of Animal Sciences, Washington State University, Pullman, WA

2Department of Animal Science, Federal University of Vicosa, Vicosa-MG, Brazil

The constant search for improving technical and economic indexes in dairy farms leads us to understand how crucial reproductive efficiency is and how it impacts profitability. Heat detection is associated with total milk production and is the main trigger to the entire reproductive process. Thus, the objective was to evaluate the productive and reproductive impact of using three different types of estrus detection techniques: visual estrus identification, rump detectors (ink or tapes), and electronic detectors (collars or pedometers) on dairy farms.

Visual estrus observation was the most used for years (Marques et al., 2020). In addition to being a traditional and widespread method among producers, it does not require an initial investment for application. However, with visual observation, even with an experienced observer, it is challenging to achieve service rates above 80%, even if the observation is carried out three times a day and for at least 30 minutes (Hansen, 2002). For this reason, it is necessary to associate visual observation with more effective technologies of heat detection. For example, in studies carried out by Mayo et al. (2019), the percentage of identification of visual estrus was 54%, while the percentage of identification through electronic markers was 79%. In general, an increase in service rate is noted when any heat detection technology is employed compared to visual detection.

However, the adoption of detection technologies initially increases property costs. Thus, a careful economic analysis should be carried out before implementing new technologies on the farm. Therefore, we performed a simulation of comparing visual detection, rump detectors, and electronic detectors in a stabilized herd of 200 cows after ten years of using the technology. According to the analyses carried out in this simulation, the visual observation of estrus has zero cost and an estimated service rate of 54% for cows (Mayo et al., 2019). In contrast, the rump detector has a cost per breeding animal of US$ 0.075/day and an estimated service rate of 64% and finally, the cost with electronic detectors was US$ 0.15 per breeding animal/day with an estimated service rate of 79% for cows (Holman et al., 2011; Mayo et al., 2019). Furthermore, a similar labor cost was considered for all scenarios since, in all technologies, we will need an employee to perform tasks related to heat identification, or to carry out a daily round of visual heat identification, or to put on, take off and monitor the use of the collars, and to make markings and maintenance of the marker sticks/inks. The analysis was performed based on a stabilized herd, and the results for the tenth year are presented.

Electronic detectors promoted a higher average milk production per cow (Table 1), a greater number of lactating cows, and a consequent increase in the daily milk production on the farm compared to the method of visual estrus detection. On the other hand, rump detectors had intermediate results. Consequently, although there was an increase in costs with breeding animals, the use of technologies improved the profit/cow and reduced the operational milk costs compared with visual observations.

In summary, heat detection directly affects farm profitability, so the adoption of new technologies has been associated with improvements in production per cow and total milk, pregnancy rate, number of lactating cows, profit per cow, and farm profit. The electronic detector showed the best results in the long-term, followed by the rump detector. Visual observation had the worst performance, which is justified by its limitations for efficient heat detection.

Table 1: Results of 10-year simulation (year 10) of three estrus detection technologies on dairy farms

Items Visual Rump Electronic
Farm indexes
   Milk yield, L/day) 5,508.46 5,904.13 6,359.78
   Milk yield per lactating cow, L/day 33.69 34.86 35.98
   Milking cows 163.53 169.39 176.78
   Conception rate, % 27% 27% 27%
   Pregnancy rate, % 15% 17% 22%
   Breeding cows, # 30.63 35.20 40.15
Economic records
   Expenditures with heat detection, $/yr 0.00 2,046.99 3,811.64
   Milk operational cost, $/cwt 10.28 10.29 10.26
   Profit, $/yr 179,163.14 194,665.41 213,632.56
   Profit/cow, $/cow/yr 876.48 939.88 998.57

References

Hansen, P.J. 2002. Embryonic mortality in cattle from the embryo’s perspective. J. Anim. Sci. 80:E33–E44. doi:10.2527/animalsci2002.80E-Suppl_2E33x.

Holman, A., J. Thompson, J.E. Routly, J. Cameron, D.N. Jones, D. Grove-White, R.F. Smith, and H. Dobson. 2011. Comparison of oestrus detection methods in dairy cattle. Vet. Rec. 169:47–47. doi:10.1136/vr.d2344.

Marques, L.R., J.V.N. Almeida, T.C. Marques, K.C. Guimarães, T. do P. Paim, and K.M. Leão. 2020. Estrus detection and reproductive performance of dairy cows: Review. Res. Soc. Dev. 9:e243974063. doi:10.33448/rsd-v9i7.4063.

Mayo, L.M., W.J. Silvia, D.L. Ray, B.W. Jones, A.E. Stone, I.C. Tsai, J.D. Clark, J.M. Bewley, and G. Heersche. 2019. Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows. J. Dairy Sci. 102:2645–2656. doi:10.3168/jds.2018-14738.

 

What’s New in Dairy Science Research?

Research in dairy sciences conducted at universities and research centers doesn’t always make its way to dairy farmers.  I am here to help bridge the gap between research and on-farm practice.  The goal of this article is to inform you of new technologies and ideas that can help improve the welfare and production of your cows.  I hope you enjoy my selection of articles for the December newsletter!

Is Pasture or Confinement-Based Management Better for Welfare?

As agricultural practices intensify, we move farther away from the idyllic, “natural” farming of the past, but is that always a bad thing?  Let’s look at an example of incidence of disease and malnutrition between the two systems in a review by Mee and Boyle from 2020.  Cows in pasture-based systems have a lower incidence of mastitis and lameness than those in confinement because of a greater ability to lie in clean spaces and walk on softer surfaces.  However, in the summer, cows on pasture are more likely to be affected by disease-carrying insects and parasites, and less likely to receive regular hoof care.  Cows on pasture tend to have lower body condition scores and higher incidences of negative energy balance than those in confinement, but these differences can be alleviated by providing supplemental TMR.  So which system is better?  The answer comes down to management.  Either system can provide a high level of welfare to your cows if you ensure they have adequate food and water, a dry and comfortable place to lie down, a regularly cleaned environment, and interactions with other cows.  Management is key to overall welfare!

Does Mastitis Cause Reduced Fertility?

A study published in the Journal of Dairy Science (Dalaneni et al., 2020) found differences in reproductive performance between cows that had been diagnosed with clinical mastitis and those that had not.  There were also differences based on the type of bacteria causing the mastitis.  Major pathogens (cause more symptoms and more severe symptoms of disease) like streptococcus and E. coli had greater consequences on reproductive performance than minor pathogens like CNS spp. (coagulase negative staph.) After analyzing 2,519 milk samples from 833 Holsteins across five herds, the researchers found that when infected with a major pathogen, cows had a lower pregnancy rate at first AI, greater pregnancy losses, and more days open than cows without an infection.  Those infected with minor pathogens had intermediate consequences to reproductive performance.  Knowing the pathogens present on your farm and working to control them can improve the health and welfare of your herd and increase their reproductive potential.

Can Drinking Behavior Alert you to Heat Stress?

Most of us dealt with an extreme heat wave over the summer and knowing when your cows begin to develop heat stress can allow you to intervene before welfare and production are compromised. Researchers in Taiwan (Tsai et al., 2020) tried using cameras with temperature and humidity detectors at waterers to monitor drinking behavior across seasons.  Not surprisingly, cows drank more often and for longer bouts when temperatures were high.  Having information on your cows normal drinking behavior throughout the year can allow you to see when abnormal intakes of water occur.  If your cows suddenly begin drinking more often and for longer bouts than normal, you know it is time to provide them with alternative means to cool down such as misters and fans.

References

Mee, J.F. and L.A. Boyle. 2020. Assessing whether dairy cow welfare is “better” in pasture-based than in confinement-based management systems. N.Z. Vet. J. 68(3):168-177.

Dalanezi, F.M., S.F. Joaquim, F.F. Guimarães, S.T. Guerra, B.C. Lopes, E.M.S. Schmidt, R.L.A. Cerri, and H. Langoni. 2020. Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. J. Dairy Sci. 103(4):3648-3655.

Tsai, Y., J. Hsu, S. Ding, D.J.A Rustia, and T. Lin. 2020. Assessment of dairy cow heat stress by monitoring drinking behavior using an embedded imaging system. Biosyst. Eng. 199(2020):97-108.

Callan Lichtenwalter, Ph.D. student, WSU Animal Sciences

 

Amber’s Top Ten Tips: Impact of Environment on Cow Behavior and Well-being

Dairy cattle across Washington State are exposed to a wide variety of environmental conditions, including wildfires, floods, and blizzards. With the recent flooding that affected many of our dairies, I felt compelled to search for as much scientific information as possible on the impacts of flooding on short-term and long-term cattle well-being. I have good news and bad news. The bad news is that very little research has been conducted on the impacts of flooding on cattle well-being. The good news is that some scientific data related to flooding on dairies is available, as well as articles related to the impacts of wildfires and environmental stress on cattle. Below is a summary of these articles. I hope this information is useful as we cope with our current weather conditions (the snow is falling as I write this article) and prepare for future environmental challenges.

  1. Distress and immunosuppression

As you may recall from previous newsletter articles, distress triggers cortisol production, which negatively influences an animal’s immune system, referred to as immunosuppression. While the direct effects of environmental conditions on cattle are usually obvious, the indirect effects are less obvious. For example, alterations in the environment’s water cycle and atmospheric CO2 changes plant composition and feed quality. Poor feed quality further challenges an animal’s ability to maintain a strong immune system (as reviewed by Filipe et al., 2020).

  1. Mastitis cases associated with flooding events

Incidences of mastitis cases in dairy cattle can be 1.5 times higher one year post-flooding when compared to pre-flooding incidence rates (as reviewed by Gaviglio et al., 2021).

  1. Lameness cases associated with flooding events

Incidences of lameness cases in dairy cattle can be 1.3 times higher one year post-flooding when compared to pre-flooding incidence rates (as reviewed by Gaviglio et al., 2021).

  1. Relationship between wildfires and milk quality

Wildfires contribute to higher concentrations of air pollutants, including fine particulate matter (PM2.5). Decreases in milk yield and increases in milk somatic cell counts have been associated with higher concentrations of PM2.5 (Beaupied et al., 2021).

  1. Milk production affected by wildfires

A preliminary survey of livestock producers in California, Oregon, and Nevada revealed that 13% of the surveyed dairy producers reported losses in milk production during wildfire events (O’Hara et al., 2021).

  1. Feed intake and feed efficiency during hot weather

When the temperature-humidity index (THI) increased in the United Kingdom, Holstein Friesian cows decreased their dry matter intake by 12%, but their feed efficiency (converting feed to milk) increased (Hill and Wall, 2017). Researchers are investigating this phenomenon to determine how genetics may play a role in feed efficiency during hot weather.

  1. Winter housing and mastitis cases

Cows on an organic dairy in Minnesota housed in a three-sided compost-bedded pack barn (indoors) had more clinical mastitis cases than cows housed outdoors on a straw pack during winter (indoors: 27% of cows and outdoors: 15% of cows; Sjostrom et al., 2019).

  1. Use of outdoor pack during summer and winter

Freestall-housed cows offered access to an outdoor deep-bedded open pack spent 25% of the time outside during summer and only 1.8% of the time outside during winter. When the cows used the outdoor space during the summer, it was mostly during the night (Smid et al., 2019). 

  1. Lying behavior and milk yield

During hot weather in Italy, late lactation (> 100 days in milk) cows spent more time lying when THI was the lowest. For every hour of lying time, cows in this study produced almost six additional pounds of milk (Lovarelli et al., 2020).

  1. Hot weather and competition

Once THI reached 65 units, the number of competitive replacements (one cow pushing another cow out of the way) that occurred at the waterer increased. Eighty-five percent more replacements occurred when THI was about 80 units compared to a THI of less than 60 units. Replacements at the waterer during hot weather can cause additional distress for subordinate cows (McDonald et al., 2020).

Amber Adams Progar, Dairy Management Specialist

amber.adams-progar@wsu.edu

September 2021 WSU Dairy Newsletter

Welcome to the September 2021 WSU Dairy Newsletter

Author: Dr. Amber Adams Progar, Dairy Management Specialist in Animal Sciences, WSU

I hope your excitement for this newsletter matches the excitement WSU faculty, staff, students, and fans have for the beginning of the 2021-2022 academic year! Although the environment around us is constantly changing because of the pandemic, the WSU Department of Animal Sciences continues to meet the needs of our students the animal science industry, and the public through our teaching, research, and Extension efforts. This issue of our newsletter also marks the transfer of the editorial baton.

It is with much honor that I accept the role of editor for this newsletter. I commend and thank Dr. Joe Harrison for his editorial oversight of our WSU Dairy Newsletter over the years. His leadership was vital to the redesign and revival of this newsletter. Thank you, Joe!

Farmers for the future!

Author: Dr. Gordon Murdoch, Chair of Animal Sciences Department, WSU

It is with tremendous optimism with respect to farming and ranching and its future, that I draft this brief article without hesitancy, at the invitation of Dr. Adams-Progar. My unbridled optimism may seem crazy given the pressures our regional dairies are faced with; rising feed costs, increasing labor costs, environmental and legislative requirements, drought, heat waves and cold snaps. However, my optimism is derived from my confidence in the ingenuity, creativeness, resiliency and stewardship that has always resided in our farm communities. “Where there is a will, there is a way”-author unknown, and the will to do things effectively, sustainably and to the highest standards has always resided in our livestock producers. Were I a betting man, I would wager on the long-term success of our farms and dairies and I dare say not in spite of the challenges but perhaps even because of the challenges. Obstacles do not prevent farmers from being successful they force farmers to find the way to be successful, a task they have endured since livestock were domesticated.

I am proud to serve the dairy industry in my capacity as Chair of the Animal Sciences department at the great land-grant, Washington State University. This is where through research, education and Extension the Animal Sciences department at WSU has the privilege to work hand in hand with dairy producers to hypothesize, research and evaluate solutions to address all of the challenges that face our dairy industry. We do not forget past challenges, and experiences, but rather capitalize upon them to attain sustainability through progressive solutions. It would be exceedingly more challenging to envision a successful and sustainable future in our dairy industry were it not true that our dairies produce one of the highest-quality, safe, and nutritious agricultural products for human consumption. Our cows are indeed the stars of the show, with genetics and productivity traits enhanced consistently year after year over the last century; they will continue to produce the milk, milk components and by-products that are unmatched. The advent of modern tools including genetic, nutritional, robotic and computational will provide never previously attainable strategies that will secure the sustainability of our dairies.

There is another invaluable resource that WSU animal sciences gets to work with every day, and that is our energetic youth that commit their educational future to us. They are the future, they are the source of the solutions and they are the stewards of the future animal and land-based resources. WSU Animal Sciences remain committed to our mission to train them effectively, to expose them to the essentials pertaining to nutrition, health, reproduction, physiology, care, selection and improvement so that they can build upon the industry successes of the past and present and create the sustainable dairy of the future.

So, pour yourself a tall glass of milk, buckle up, pay attention and be amazed by the progress and solutions that the dairy industry, WSU and our graduating animal sciences students have instore for the future!

 

Welcome Dr. Marcos Marcondes!

After pandemic-related delays, Marcos Marcondes finally arrived in Pullman in January 2021 from Brazil as an Assistant Professor in the Department of Animal Sciences. He joins the department’s Ruminant Nutrition Team, specializing in dairy cattle management and nutrition. Marcos began his education in animal sciences in 2001, earning a B.S. from the Federal University of Viçosa in Brazil in 2005. He then earned M.S. and Ph.D. degrees in animal science from the same university in 2007 and 2010, respectively. After completing his formal education, Marcos joined the Department of Animal Science faculty at the same institution as an assistant professor and was promoted to associate professor in 2018. He built a solid and collaborative dairy science research team that included undergraduate and graduate students, technicians, and other faculty. His team integrated fundamental and applied research techniques with biotechnology, genetics, food sciences, microbiology, and economics to advance dairy science, resulting in nine funded federal grants and more than 140 peer-reviewed publications.

In addition to leading a strong research program, Marcos taught ten different undergraduate and graduate courses, including dairy production courses that focused on managing small and large dairy herds. Recently, Marcos took a sabbatical and served as a post-doctoral fellow in the Department of Animal Sciences at the University of Florida. While there, he integrated his background in ruminant nutrition with dairy economics, learning and implementing modeling tools to evaluate the economic impacts of management decisions on commercial dairy production.

Marcos is excited to be in Pullman! His research program will focus on feed evaluation, dairy calf and heifer nutrition and development, nutrient requirements for optimal mammary gland development, use of beef semen in dairy herds to increase the value of male offspring, and incorporation of alternative feedstuffs and byproduct feeds in dairy cattle diets to reduce feed costs. He is thrilled that the department has a RUSITEC (rumen simulation technique), a semi-continuous in vitro culture method that simulates ruminal fermentation that he can use for the initial evaluation of feedstuff digestibility. He believes that the Department of Animal Science has all the necessary tools to run studies that could lead to creative solutions to the Dairy industry. Marcos is focused on talking to producers, understanding their most current needs, and developing scientific solutions. While working at the Federal University of Viçosa, Marcos participated in extension projects where he had direct contact with more than 100 dairies and mentored students on consulting farms. As the consulting focused on general management of the farms (including nutrition, reproduction, health, and management), he could understand the wide variability within dairy farms and develop solutions for those problems. In this way, Marcos also focused his research on building solutions for dairy farmers. Now, Marcos is excited to outreach and see what the Pacific NorthWest can offer in terms of solutions and challenges to the dairy industry and how he can use his research to solve those problems.

 

What’s New in Dairy Research?

Author: Callan Lichtenwalter, Ph.D. student in Animal Sciences, WSU

Hi, my name is Callan Lichtenwalter and I am a Ph.D. student in the Animal Science department at WSU.  I am doing research on how pest birds impact dairy behavior and welfare and effective solutions to deter pest birds from dairies.  For each newsletter I will be choosing four recent articles from dairy science to highlight.  I hope you enjoy reading about them!

Beef sires and calf growth. Have you considered using beef sires to increase calf growth for meat production?  A 2020 study out of New Zealand (Martin et al., 2020) investigated whether Estimated Breeding Value (EBV) of sires with at least five progeny could be used to estimate increased growth in calves.  1171 mixed-breed dairy cows were bred with Angus or Hereford bulls, and calf growth was measured from 131 to 800 days.  The sire of a calf greatly impacted calf growth.  The weight differences between calves of the lightest and heaviest sires was 42lb at 131 days and 90 198 at 800 days, and EBV-based predicted weights fit closely with actual live weights.

IgG concentrations in colostrum. Proper absorption of quality colostrum is vital for the health and longevity of a calf because they are born with immature immune systems.  Marseglia and colleagues (2020) collected colostrum and serum samples from 60 cow-calf pairs to measure any potential differences in colostrum quality and absorption.  Cow breed did not impact the concentration of IgG in colostrum, but parity did.  First-parity cows had lower IgG concentrations (75.4 g/L) in their colostrum than older cows (four or more parities; 106.5 g/L).  The greatest number of failed colostrum IgG transfers occurred when feed colostrum from first- and fifth+-parity cows, and the authors speculate that this is due to lower colostrum production in these groups.

Hot weather and mastitis. Heat waves are becoming increasingly common and cause concern for farm-animal health and welfare.  In their 2020 study, Vitali and others investigated how hot weather correlated with the incidence rates of mastitis cases in dairy cows.  Accumulated heat load (AHL; excess heat the body can’t rid itself of) as a measure of heat load index over time (HLI; ambient temperature, relative humidity, solar radiation, and wind speed) the researchers found that the incidence of mastitis and Staph. aureus cases increased as AHL increased.  As milk yield, parity, and days in milk increased, incidences of mastitis when AHL was high also increased.  Further study is needed to understand the threshold AHL at which mastitis incidence rate begins to increase.

Male calf health and sales. Male calves that are to be sent to beef and veal operations often arrive at auction in subprime conditions and will sell for very little, if they sell at all.  To understand this relationship, a study out of Canada by Wilson and colleagues (2020) examined calf health and weight at auction and compared this to the price at which the calf was sold.  Of the 355 calves they examined, 20% had at least one health concern, of which the most common were navel disease and ocular/nasal discharge.  Calf weights ranged from 60 lbs. to 181 lbs. with an average of 104 lbs.  The highest priced calf sold for 370 Canadian dollars, while 10.5% calves sold for less than CAN$10, and almost 3% of calves did not sell at all.  Calves that had depressed attitudes or appeared unwell sold for the least amount.

References

Marseglia, A., R. Pitino, C. Bresciani, A. Quarantelli, and F. Righi. 2020. Measurement of transfer of colostral passive immunity in dairy calves. Acta Fytotech. Zootech. 23:190-196.

Martin, N., N. Schreurs, S. Morris, N. Lopez-Villalobos, J. McDade, and R. Hickson. 2020. Sire effects on post-weaning growth of beef-cross-dairy cattle: A case study in New Zealand. Anim. 10(2313):1-11.

Napolitano, F., A. Bragaglio, E. Sabia, F. Serrapica, A. Braghieri, and G. De Rosa. 2020. The human-animal relationship in dairy animals. J. Dairy. Res. 87(S1):47-52.

Vitali, A., A. Felici, A. M. Lees, G. Giacinti, C. Maresca, U. Bernabucci, J.B. Gaughan, A. Nardone, and N. Lacetera. 2020. J. Dairy Sci. 103(9):8378-8387.

Wilson, D.J., J. Stojkov, D. L. Renaud, and D. Fraser. 2020. Short communication: Condition of male dairy calves at auction markets. J. Dairy Sci. 103(9):8530-8534.

 

New Study: Utilizing Genomic Selection as a Risk Management Tool

Authors: Allison Herrick, Ph.D. student in Animal Sciences, WSU

Dr. Holly Neibergs, Professor in Animal Sciences, WSU

The Western Sustainable Agriculture Research and Education (WSARE) program is a competitive research and education program that covers the western United States. Investigators at Washington State University (Holly Neibergs, Shannon Neibergs and Amber Adams-Progar) and the University of Idaho (Joseph Dalton) recently received funding from WSARE to determine if the use of genomic selection improves  the selection of replacement heifers as measured by their first lactation performance and their profitability. The study is being conducted at four Washington and two Idaho dairies, with each dairy providing information and samples on about 200 heifers. The study focuses on the dairy industry because it plays key economic and social roles throughout Washington and Idaho. As dairies have experienced significant financial challenges in recent years, it is imperative to reduce costs and financial risks to achieve the returns needed for producers to support themselves and their families. Genomic selection utilizes genotyping of cattle, which provides an opportunity to raise higher quality replacements, reduce the total number of replacements needed to maintain herd size, and identify the best animals to be used to produce optimal offspring for the next generation. Genotyping is the technology of sampling cattle DNA and using that information to predict how that animal will perform as a lactating adult. By examining the costs surrounding taking and processing the samples and then implementing the results, the cost-effectiveness of the process and the overall benefit for producers will be determined.

The words “genomic selection” or “genomics” have become more commonly mentioned within recent years in the dairy industry. However, many people do not fully understand what this technology does or what it has the potential to provide for them. The education portion of the study facilitates discussion of the opportunities genomic selection can provide. Producer and veterinarian education workshops will be held in Washington and Idaho where attendees can try their hand using genomic selection and selection based on relative or pedigree information to pick the most profitable heifers. Students at WSU will also compare selection strategies using these data. Examples from this project will be used in classes to help them better understand how genomics can increase the accuracy of estimating heifer performance while  reducing financial risk.

The 1200 heifers sampled in the study will be followed through their first lactation and comparisons will be made between their actual production and their predicted performance using the two different approaches. The reduction of financial risk will be measured by comparing the profitability of heifers chosen as replacements  using pedigree information to heifers chosen as replacements  using genomic information. If the use of genomic selection improves the accuracy of choosing heifers that will be profitable in the milking parlor, then genomic selection can be used as a tool to reduce financial risk for dairies. The selection of better heifers will also benefit the dairies in the long-run, as their calves will also carry the genetics to be more profitable leading to increased profitability and sustainability in the future.

 

Beef semen: A summary of its use on dairy cows

Authors: Jessica Pereira, PhD student in Animal Sciences, WSU

Dr. Marcos I. Marcondes, Assistant Professor in Animal Sciences, WSU

Dr. Fernanda Carolina Ferreira, UCCE Herd Health & Management Economist Specialist, UC Davis

The use of beef semen on dairy cows is increasing in the last years mainly due to the high premium price paid for dairy-beef crossbreds. This strategy is not new, and factors such as: (1) better reproductive performance; (2) high use of sexed semen; (3) milk price variation; (4) low surplus heifers’ price; (5) low dairy male and heifer prices; (6) high cost to raise heifers; and (7) high one-day-old dairy-beef crossbred price, are driving dairy farmers to adopt the use of beef semen on dairy cows.

The use of beef on dairies in Western – US DHIA herds, represented 0.3% of all breedings in 2015, and in 2019, the percentage increased to more than 26% of all breedings (Figure 1). Data from the National Association of Animal Breeders reported an increase in beef semen sales with 4.7 million doses (Angus, Simmental, Limousin, and others) from 2017 to 2020, and a decrease to 4.8 million doses from the sale of dairy semen sales (Holstein, Jersey, Red Holstein, Brow Swiss, and others). Likewise, the heifer calves and bull calves price experienced a reduction from $250 to less than $50 for heifers and from $200 to $15 for bulls from 2015 to 2021, a decline of 80% and 97%, respectively.

Results from a beef semen survey mailed in California (2020), reported that most dairy producers are using beef semen in third and older lactating dairy cows and on their third and higher breedings. Angus semen was the most used, and the Angus-dairy day-old calves had the greatest variation in their market price, from less than $50 to more than $250. Therefore, the beef semen fertility, calf management after birth (providing high-quality colostrum, in a few hours of life, with a good volume and evaluating navel disinfection), and a contract with calf ranch/feedlots, may be important factors to keep the premium price paid for dairy-beef crossbred calves. Also, beef semen use is an opportunity tool to control heifer inventory, improve genetic gain, increase the use of sexed semen in genetically superior heifers and use of beef semen use in repeated breeders and cows genetically inferior. This is especially important in a scenario with low milk and heifer prices. Furthermore, controlling heifer inventory reduces the environmental footprint of dairy production, reducing methane emissions.

There are many strategies that dairy producers can combine to use beef semen to maximize their profits.  Good records (which include mortality, longevity, reproductive performance, heifer raising costs, and the number of replacement heifers) and understanding the market price for surplus heifers, heifers calves, bull calves, and dairy-beef crossbred calves are crucial to make the best decisions for your farm.

Figure 1.  Percentage of beef, conventional dairy and sexed dairy semen used in Holstein dairy herds in Western – US, from 2015 to 2019 (CA, WA, OR, ID and NM).

 

WSU Dairy Club: Udderly Excited for a New Year and new opportunities!

Author: Kaitlyn Wright, WSU Dairy Club President 

The WSU Dairy Club is a student-run organization that aims to expand the knowledge of the dairy industry and its contribution to the human health and agricultural world. We believe that teaching individuals from any background issues and topics pertaining to the dairy industry generates future scientists, workforce and creates a positive image that can be brought to the community. The members of our club develop a better understanding of the industry through workshops, guest lectures, field trips, and hands-on experiences. Workshops include many things such as discussing marketing strategies, developing a resume and job application profile, working directly with calves and mature cows to provide more animal experience to our students. Members can learn various topics, from reproduction, genetics, health, husbandry to nutrition, to cow-calf care, and milk processing. Members also have the opportunity to develop leadership skills in things such as running for officer positions or planning and leading events. The objective for this year is to reactivate and make a positive contribution to the industry and club through fundraisers, and attending seminars and conferences. These conferences include the Washington Dairy Conference to inform local dairymen/women, business owners, veterinarians, and industry representatives of our club and our activities. The Dairy Club has the honor of hosting annual events such as Cougar Youth Weekend, which allows children K-12 across the country to tour the WSU Dairy and participate in educational workshops, games, and even learning how to fit, show, and halter train calves. Other events such as Dairy Olympics allows for WSU students and the local community to get involved in similar activities and have fun playing games all while learning the positive impact and importance of the industry.

The Dairy Club hopes to see you soon at the 2021 Washington State Dairy Conference!

 

WSU Cooperative University Dairy Students (CUDS) Ready to Thrive in 2021-2022

Author: Dr. Amber Adams Progar, WSU CUDS Advisor

The 2021-2022 academic year is off to a great start for the WSU CUDS Program. Besides managing the herd, the 13-member co-op is currently focused on scheduling field trips, guest speakers, and team-building events. Recruitment for the next cohort of members has also begun. Applications for CUDS opened on September 13th and will close on October 29th. As part of the recruitment process, CUDS members shared their experiences with fellow students at the WSU Animal Sciences Welcome Back BBQ and the WSU CAHNRS Fall Festival. The group looks forward to all the opportunities Fall 2021 will offer and is excited to welcome new members in January 2022.