Skip to main content Skip to navigation
Washington State University Dairy News

December 2021 Dairy Newsletter

Letter from the Editor

I hope this newsletter finds you excited for the holidays and hopeful for the New Year. This past year was an unprecedented one full of historical moments, some we cherish and some we hope to forget. In spite of the challenges we faced this year, the strength of the Washington State dairy industry never waned. In fact, some of my favorite moments from this year occurred at the Annual Washington State Dairy Conference this month. Watching everyone enjoy each other’s company and exchange a bit of banter was priceless. Witnessing how the Washington dairy industry family pulled together to help each other during the latest flood disaster reminded me why I enjoy my job so much. The people in our industry bring joy to my work.

This joy was similar to the joy our WSU Animal Sciences students experienced when they returned to campus for in-person classes this semester. As you know firsthand, skills in Animal Sciences are best taught hands-on. Teaching a student how to milk a cow just isn’t the same when you are trying to explain it over a video conference. We are so grateful we were able to offer our classes the way they were intended to be offered, in-person and hands-on. The semester has now come to a close and the campus is once again quiet. I am hopeful that the new semester will open new doors for our students, including opportunities to meet you and learn about your experiences.

Time is invaluable. Thank you for setting aside time to read our newsletter. We hope you enjoy the articles and find the information to be helpful. If you have any suggestions for future article topics, please send them to me at Happy Holidays!

Amber Adams Progar, Associate Professor and Dairy Management Specialist

Cooperative University Dairy Students enjoying the 2021 Washington Dairy Conference

A Note from the Animal Sciences Chair

At last, this December there was an opportunity to meet in person with members of the WA Dairy Federation during the annual meeting at Wolf Creek Lodge, Grand Mound, WA. Having served as Chair of Animal Sciences at WSU for slightly over a year now, this was my first opportunity to attend this event and meet the great people. While the devastating impacts of the recent floods were certainly a topic of conversation and concern, there was also plenty of optimism, progressive ideas and shared wisdom. For me personally, I experienced great enthusiasm for the proposed efforts with respect to sustainability initiatives, carbon credits and market growth. WSU Animal Sciences intends on contributing to these efforts and advancements as an important component of our land-grant mission. I was overwhelmed by the welcome and support by members; as so many approached and introduced themselves and importantly expressed their willingness to work with WSU. We have a vision to upgrade our Knott Dairy Center, provide more internships for our undergraduate COUGS, grow our graduate program and maximize our research. It is important that WSU Animal Sciences and our dairy industry partners strategize on where we can proceed as a unified team, vested in the sustainable dairy industry. Thank you all, for your hospitality, I look forward to learning from each of you and building upon our long-standing commitments to one another. Happy holidays, and best wishes for an exceptional 2022.

Gordon K. Murdoch, Professor & Chair WSU Animal Sciences


Estrus detection: an overview of technologies used in dairy farms and their effects on productivity and profitability

Marcos I Marcondes1, Erollykens F. Santos2, and Lucilaine M. Veline2

1Department of Animal Sciences, Washington State University, Pullman, WA

2Department of Animal Science, Federal University of Vicosa, Vicosa-MG, Brazil

The constant search for improving technical and economic indexes in dairy farms leads us to understand how crucial reproductive efficiency is and how it impacts profitability. Heat detection is associated with total milk production and is the main trigger to the entire reproductive process. Thus, the objective was to evaluate the productive and reproductive impact of using three different types of estrus detection techniques: visual estrus identification, rump detectors (ink or tapes), and electronic detectors (collars or pedometers) on dairy farms.

Visual estrus observation was the most used for years (Marques et al., 2020). In addition to being a traditional and widespread method among producers, it does not require an initial investment for application. However, with visual observation, even with an experienced observer, it is challenging to achieve service rates above 80%, even if the observation is carried out three times a day and for at least 30 minutes (Hansen, 2002). For this reason, it is necessary to associate visual observation with more effective technologies of heat detection. For example, in studies carried out by Mayo et al. (2019), the percentage of identification of visual estrus was 54%, while the percentage of identification through electronic markers was 79%. In general, an increase in service rate is noted when any heat detection technology is employed compared to visual detection.

However, the adoption of detection technologies initially increases property costs. Thus, a careful economic analysis should be carried out before implementing new technologies on the farm. Therefore, we performed a simulation of comparing visual detection, rump detectors, and electronic detectors in a stabilized herd of 200 cows after ten years of using the technology. According to the analyses carried out in this simulation, the visual observation of estrus has zero cost and an estimated service rate of 54% for cows (Mayo et al., 2019). In contrast, the rump detector has a cost per breeding animal of US$ 0.075/day and an estimated service rate of 64% and finally, the cost with electronic detectors was US$ 0.15 per breeding animal/day with an estimated service rate of 79% for cows (Holman et al., 2011; Mayo et al., 2019). Furthermore, a similar labor cost was considered for all scenarios since, in all technologies, we will need an employee to perform tasks related to heat identification, or to carry out a daily round of visual heat identification, or to put on, take off and monitor the use of the collars, and to make markings and maintenance of the marker sticks/inks. The analysis was performed based on a stabilized herd, and the results for the tenth year are presented.

Electronic detectors promoted a higher average milk production per cow (Table 1), a greater number of lactating cows, and a consequent increase in the daily milk production on the farm compared to the method of visual estrus detection. On the other hand, rump detectors had intermediate results. Consequently, although there was an increase in costs with breeding animals, the use of technologies improved the profit/cow and reduced the operational milk costs compared with visual observations.

In summary, heat detection directly affects farm profitability, so the adoption of new technologies has been associated with improvements in production per cow and total milk, pregnancy rate, number of lactating cows, profit per cow, and farm profit. The electronic detector showed the best results in the long-term, followed by the rump detector. Visual observation had the worst performance, which is justified by its limitations for efficient heat detection.

Table 1: Results of 10-year simulation (year 10) of three estrus detection technologies on dairy farms

Items Visual Rump Electronic
Farm indexes
   Milk yield, L/day) 5,508.46 5,904.13 6,359.78
   Milk yield per lactating cow, L/day 33.69 34.86 35.98
   Milking cows 163.53 169.39 176.78
   Conception rate, % 27% 27% 27%
   Pregnancy rate, % 15% 17% 22%
   Breeding cows, # 30.63 35.20 40.15
Economic records
   Expenditures with heat detection, $/yr 0.00 2,046.99 3,811.64
   Milk operational cost, $/cwt 10.28 10.29 10.26
   Profit, $/yr 179,163.14 194,665.41 213,632.56
   Profit/cow, $/cow/yr 876.48 939.88 998.57


Hansen, P.J. 2002. Embryonic mortality in cattle from the embryo’s perspective. J. Anim. Sci. 80:E33–E44. doi:10.2527/animalsci2002.80E-Suppl_2E33x.

Holman, A., J. Thompson, J.E. Routly, J. Cameron, D.N. Jones, D. Grove-White, R.F. Smith, and H. Dobson. 2011. Comparison of oestrus detection methods in dairy cattle. Vet. Rec. 169:47–47. doi:10.1136/vr.d2344.

Marques, L.R., J.V.N. Almeida, T.C. Marques, K.C. Guimarães, T. do P. Paim, and K.M. Leão. 2020. Estrus detection and reproductive performance of dairy cows: Review. Res. Soc. Dev. 9:e243974063. doi:10.33448/rsd-v9i7.4063.

Mayo, L.M., W.J. Silvia, D.L. Ray, B.W. Jones, A.E. Stone, I.C. Tsai, J.D. Clark, J.M. Bewley, and G. Heersche. 2019. Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows. J. Dairy Sci. 102:2645–2656. doi:10.3168/jds.2018-14738.


What’s New in Dairy Science Research?

Research in dairy sciences conducted at universities and research centers doesn’t always make its way to dairy farmers.  I am here to help bridge the gap between research and on-farm practice.  The goal of this article is to inform you of new technologies and ideas that can help improve the welfare and production of your cows.  I hope you enjoy my selection of articles for the December newsletter!

Is Pasture or Confinement-Based Management Better for Welfare?

As agricultural practices intensify, we move farther away from the idyllic, “natural” farming of the past, but is that always a bad thing?  Let’s look at an example of incidence of disease and malnutrition between the two systems in a review by Mee and Boyle from 2020.  Cows in pasture-based systems have a lower incidence of mastitis and lameness than those in confinement because of a greater ability to lie in clean spaces and walk on softer surfaces.  However, in the summer, cows on pasture are more likely to be affected by disease-carrying insects and parasites, and less likely to receive regular hoof care.  Cows on pasture tend to have lower body condition scores and higher incidences of negative energy balance than those in confinement, but these differences can be alleviated by providing supplemental TMR.  So which system is better?  The answer comes down to management.  Either system can provide a high level of welfare to your cows if you ensure they have adequate food and water, a dry and comfortable place to lie down, a regularly cleaned environment, and interactions with other cows.  Management is key to overall welfare!

Does Mastitis Cause Reduced Fertility?

A study published in the Journal of Dairy Science (Dalaneni et al., 2020) found differences in reproductive performance between cows that had been diagnosed with clinical mastitis and those that had not.  There were also differences based on the type of bacteria causing the mastitis.  Major pathogens (cause more symptoms and more severe symptoms of disease) like streptococcus and E. coli had greater consequences on reproductive performance than minor pathogens like CNS spp. (coagulase negative staph.) After analyzing 2,519 milk samples from 833 Holsteins across five herds, the researchers found that when infected with a major pathogen, cows had a lower pregnancy rate at first AI, greater pregnancy losses, and more days open than cows without an infection.  Those infected with minor pathogens had intermediate consequences to reproductive performance.  Knowing the pathogens present on your farm and working to control them can improve the health and welfare of your herd and increase their reproductive potential.

Can Drinking Behavior Alert you to Heat Stress?

Most of us dealt with an extreme heat wave over the summer and knowing when your cows begin to develop heat stress can allow you to intervene before welfare and production are compromised. Researchers in Taiwan (Tsai et al., 2020) tried using cameras with temperature and humidity detectors at waterers to monitor drinking behavior across seasons.  Not surprisingly, cows drank more often and for longer bouts when temperatures were high.  Having information on your cows normal drinking behavior throughout the year can allow you to see when abnormal intakes of water occur.  If your cows suddenly begin drinking more often and for longer bouts than normal, you know it is time to provide them with alternative means to cool down such as misters and fans.


Mee, J.F. and L.A. Boyle. 2020. Assessing whether dairy cow welfare is “better” in pasture-based than in confinement-based management systems. N.Z. Vet. J. 68(3):168-177.

Dalanezi, F.M., S.F. Joaquim, F.F. Guimarães, S.T. Guerra, B.C. Lopes, E.M.S. Schmidt, R.L.A. Cerri, and H. Langoni. 2020. Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. J. Dairy Sci. 103(4):3648-3655.

Tsai, Y., J. Hsu, S. Ding, D.J.A Rustia, and T. Lin. 2020. Assessment of dairy cow heat stress by monitoring drinking behavior using an embedded imaging system. Biosyst. Eng. 199(2020):97-108.

Callan Lichtenwalter, Ph.D. student, WSU Animal Sciences


Amber’s Top Ten Tips: Impact of Environment on Cow Behavior and Well-being

Dairy cattle across Washington State are exposed to a wide variety of environmental conditions, including wildfires, floods, and blizzards. With the recent flooding that affected many of our dairies, I felt compelled to search for as much scientific information as possible on the impacts of flooding on short-term and long-term cattle well-being. I have good news and bad news. The bad news is that very little research has been conducted on the impacts of flooding on cattle well-being. The good news is that some scientific data related to flooding on dairies is available, as well as articles related to the impacts of wildfires and environmental stress on cattle. Below is a summary of these articles. I hope this information is useful as we cope with our current weather conditions (the snow is falling as I write this article) and prepare for future environmental challenges.

  1. Distress and immunosuppression

As you may recall from previous newsletter articles, distress triggers cortisol production, which negatively influences an animal’s immune system, referred to as immunosuppression. While the direct effects of environmental conditions on cattle are usually obvious, the indirect effects are less obvious. For example, alterations in the environment’s water cycle and atmospheric CO2 changes plant composition and feed quality. Poor feed quality further challenges an animal’s ability to maintain a strong immune system (as reviewed by Filipe et al., 2020).

  1. Mastitis cases associated with flooding events

Incidences of mastitis cases in dairy cattle can be 1.5 times higher one year post-flooding when compared to pre-flooding incidence rates (as reviewed by Gaviglio et al., 2021).

  1. Lameness cases associated with flooding events

Incidences of lameness cases in dairy cattle can be 1.3 times higher one year post-flooding when compared to pre-flooding incidence rates (as reviewed by Gaviglio et al., 2021).

  1. Relationship between wildfires and milk quality

Wildfires contribute to higher concentrations of air pollutants, including fine particulate matter (PM2.5). Decreases in milk yield and increases in milk somatic cell counts have been associated with higher concentrations of PM2.5 (Beaupied et al., 2021).

  1. Milk production affected by wildfires

A preliminary survey of livestock producers in California, Oregon, and Nevada revealed that 13% of the surveyed dairy producers reported losses in milk production during wildfire events (O’Hara et al., 2021).

  1. Feed intake and feed efficiency during hot weather

When the temperature-humidity index (THI) increased in the United Kingdom, Holstein Friesian cows decreased their dry matter intake by 12%, but their feed efficiency (converting feed to milk) increased (Hill and Wall, 2017). Researchers are investigating this phenomenon to determine how genetics may play a role in feed efficiency during hot weather.

  1. Winter housing and mastitis cases

Cows on an organic dairy in Minnesota housed in a three-sided compost-bedded pack barn (indoors) had more clinical mastitis cases than cows housed outdoors on a straw pack during winter (indoors: 27% of cows and outdoors: 15% of cows; Sjostrom et al., 2019).

  1. Use of outdoor pack during summer and winter

Freestall-housed cows offered access to an outdoor deep-bedded open pack spent 25% of the time outside during summer and only 1.8% of the time outside during winter. When the cows used the outdoor space during the summer, it was mostly during the night (Smid et al., 2019). 

  1. Lying behavior and milk yield

During hot weather in Italy, late lactation (> 100 days in milk) cows spent more time lying when THI was the lowest. For every hour of lying time, cows in this study produced almost six additional pounds of milk (Lovarelli et al., 2020).

  1. Hot weather and competition

Once THI reached 65 units, the number of competitive replacements (one cow pushing another cow out of the way) that occurred at the waterer increased. Eighty-five percent more replacements occurred when THI was about 80 units compared to a THI of less than 60 units. Replacements at the waterer during hot weather can cause additional distress for subordinate cows (McDonald et al., 2020).

Amber Adams Progar, Dairy Management Specialist

September 2021 WSU Dairy Newsletter

Welcome to the September 2021 WSU Dairy Newsletter

Author: Dr. Amber Adams Progar, Dairy Management Specialist in Animal Sciences, WSU

I hope your excitement for this newsletter matches the excitement WSU faculty, staff, students, and fans have for the beginning of the 2021-2022 academic year! Although the environment around us is constantly changing because of the pandemic, the WSU Department of Animal Sciences continues to meet the needs of our students the animal science industry, and the public through our teaching, research, and Extension efforts. This issue of our newsletter also marks the transfer of the editorial baton.

It is with much honor that I accept the role of editor for this newsletter. I commend and thank Dr. Joe Harrison for his editorial oversight of our WSU Dairy Newsletter over the years. His leadership was vital to the redesign and revival of this newsletter. Thank you, Joe!

Farmers for the future!

Author: Dr. Gordon Murdoch, Chair of Animal Sciences Department, WSU

It is with tremendous optimism with respect to farming and ranching and its future, that I draft this brief article without hesitancy, at the invitation of Dr. Adams-Progar. My unbridled optimism may seem crazy given the pressures our regional dairies are faced with; rising feed costs, increasing labor costs, environmental and legislative requirements, drought, heat waves and cold snaps. However, my optimism is derived from my confidence in the ingenuity, creativeness, resiliency and stewardship that has always resided in our farm communities. “Where there is a will, there is a way”-author unknown, and the will to do things effectively, sustainably and to the highest standards has always resided in our livestock producers. Were I a betting man, I would wager on the long-term success of our farms and dairies and I dare say not in spite of the challenges but perhaps even because of the challenges. Obstacles do not prevent farmers from being successful they force farmers to find the way to be successful, a task they have endured since livestock were domesticated.

I am proud to serve the dairy industry in my capacity as Chair of the Animal Sciences department at the great land-grant, Washington State University. This is where through research, education and Extension the Animal Sciences department at WSU has the privilege to work hand in hand with dairy producers to hypothesize, research and evaluate solutions to address all of the challenges that face our dairy industry. We do not forget past challenges, and experiences, but rather capitalize upon them to attain sustainability through progressive solutions. It would be exceedingly more challenging to envision a successful and sustainable future in our dairy industry were it not true that our dairies produce one of the highest-quality, safe, and nutritious agricultural products for human consumption. Our cows are indeed the stars of the show, with genetics and productivity traits enhanced consistently year after year over the last century; they will continue to produce the milk, milk components and by-products that are unmatched. The advent of modern tools including genetic, nutritional, robotic and computational will provide never previously attainable strategies that will secure the sustainability of our dairies.

There is another invaluable resource that WSU animal sciences gets to work with every day, and that is our energetic youth that commit their educational future to us. They are the future, they are the source of the solutions and they are the stewards of the future animal and land-based resources. WSU Animal Sciences remain committed to our mission to train them effectively, to expose them to the essentials pertaining to nutrition, health, reproduction, physiology, care, selection and improvement so that they can build upon the industry successes of the past and present and create the sustainable dairy of the future.

So, pour yourself a tall glass of milk, buckle up, pay attention and be amazed by the progress and solutions that the dairy industry, WSU and our graduating animal sciences students have instore for the future!


Welcome Dr. Marcos Marcondes!

After pandemic-related delays, Marcos Marcondes finally arrived in Pullman in January 2021 from Brazil as an Assistant Professor in the Department of Animal Sciences. He joins the department’s Ruminant Nutrition Team, specializing in dairy cattle management and nutrition. Marcos began his education in animal sciences in 2001, earning a B.S. from the Federal University of Viçosa in Brazil in 2005. He then earned M.S. and Ph.D. degrees in animal science from the same university in 2007 and 2010, respectively. After completing his formal education, Marcos joined the Department of Animal Science faculty at the same institution as an assistant professor and was promoted to associate professor in 2018. He built a solid and collaborative dairy science research team that included undergraduate and graduate students, technicians, and other faculty. His team integrated fundamental and applied research techniques with biotechnology, genetics, food sciences, microbiology, and economics to advance dairy science, resulting in nine funded federal grants and more than 140 peer-reviewed publications.

In addition to leading a strong research program, Marcos taught ten different undergraduate and graduate courses, including dairy production courses that focused on managing small and large dairy herds. Recently, Marcos took a sabbatical and served as a post-doctoral fellow in the Department of Animal Sciences at the University of Florida. While there, he integrated his background in ruminant nutrition with dairy economics, learning and implementing modeling tools to evaluate the economic impacts of management decisions on commercial dairy production.

Marcos is excited to be in Pullman! His research program will focus on feed evaluation, dairy calf and heifer nutrition and development, nutrient requirements for optimal mammary gland development, use of beef semen in dairy herds to increase the value of male offspring, and incorporation of alternative feedstuffs and byproduct feeds in dairy cattle diets to reduce feed costs. He is thrilled that the department has a RUSITEC (rumen simulation technique), a semi-continuous in vitro culture method that simulates ruminal fermentation that he can use for the initial evaluation of feedstuff digestibility. He believes that the Department of Animal Science has all the necessary tools to run studies that could lead to creative solutions to the Dairy industry. Marcos is focused on talking to producers, understanding their most current needs, and developing scientific solutions. While working at the Federal University of Viçosa, Marcos participated in extension projects where he had direct contact with more than 100 dairies and mentored students on consulting farms. As the consulting focused on general management of the farms (including nutrition, reproduction, health, and management), he could understand the wide variability within dairy farms and develop solutions for those problems. In this way, Marcos also focused his research on building solutions for dairy farmers. Now, Marcos is excited to outreach and see what the Pacific NorthWest can offer in terms of solutions and challenges to the dairy industry and how he can use his research to solve those problems.


What’s New in Dairy Research?

Author: Callan Lichtenwalter, Ph.D. student in Animal Sciences, WSU

Hi, my name is Callan Lichtenwalter and I am a Ph.D. student in the Animal Science department at WSU.  I am doing research on how pest birds impact dairy behavior and welfare and effective solutions to deter pest birds from dairies.  For each newsletter I will be choosing four recent articles from dairy science to highlight.  I hope you enjoy reading about them!

Beef sires and calf growth. Have you considered using beef sires to increase calf growth for meat production?  A 2020 study out of New Zealand (Martin et al., 2020) investigated whether Estimated Breeding Value (EBV) of sires with at least five progeny could be used to estimate increased growth in calves.  1171 mixed-breed dairy cows were bred with Angus or Hereford bulls, and calf growth was measured from 131 to 800 days.  The sire of a calf greatly impacted calf growth.  The weight differences between calves of the lightest and heaviest sires was 42lb at 131 days and 90 198 at 800 days, and EBV-based predicted weights fit closely with actual live weights.

IgG concentrations in colostrum. Proper absorption of quality colostrum is vital for the health and longevity of a calf because they are born with immature immune systems.  Marseglia and colleagues (2020) collected colostrum and serum samples from 60 cow-calf pairs to measure any potential differences in colostrum quality and absorption.  Cow breed did not impact the concentration of IgG in colostrum, but parity did.  First-parity cows had lower IgG concentrations (75.4 g/L) in their colostrum than older cows (four or more parities; 106.5 g/L).  The greatest number of failed colostrum IgG transfers occurred when feed colostrum from first- and fifth+-parity cows, and the authors speculate that this is due to lower colostrum production in these groups.

Hot weather and mastitis. Heat waves are becoming increasingly common and cause concern for farm-animal health and welfare.  In their 2020 study, Vitali and others investigated how hot weather correlated with the incidence rates of mastitis cases in dairy cows.  Accumulated heat load (AHL; excess heat the body can’t rid itself of) as a measure of heat load index over time (HLI; ambient temperature, relative humidity, solar radiation, and wind speed) the researchers found that the incidence of mastitis and Staph. aureus cases increased as AHL increased.  As milk yield, parity, and days in milk increased, incidences of mastitis when AHL was high also increased.  Further study is needed to understand the threshold AHL at which mastitis incidence rate begins to increase.

Male calf health and sales. Male calves that are to be sent to beef and veal operations often arrive at auction in subprime conditions and will sell for very little, if they sell at all.  To understand this relationship, a study out of Canada by Wilson and colleagues (2020) examined calf health and weight at auction and compared this to the price at which the calf was sold.  Of the 355 calves they examined, 20% had at least one health concern, of which the most common were navel disease and ocular/nasal discharge.  Calf weights ranged from 60 lbs. to 181 lbs. with an average of 104 lbs.  The highest priced calf sold for 370 Canadian dollars, while 10.5% calves sold for less than CAN$10, and almost 3% of calves did not sell at all.  Calves that had depressed attitudes or appeared unwell sold for the least amount.


Marseglia, A., R. Pitino, C. Bresciani, A. Quarantelli, and F. Righi. 2020. Measurement of transfer of colostral passive immunity in dairy calves. Acta Fytotech. Zootech. 23:190-196.

Martin, N., N. Schreurs, S. Morris, N. Lopez-Villalobos, J. McDade, and R. Hickson. 2020. Sire effects on post-weaning growth of beef-cross-dairy cattle: A case study in New Zealand. Anim. 10(2313):1-11.

Napolitano, F., A. Bragaglio, E. Sabia, F. Serrapica, A. Braghieri, and G. De Rosa. 2020. The human-animal relationship in dairy animals. J. Dairy. Res. 87(S1):47-52.

Vitali, A., A. Felici, A. M. Lees, G. Giacinti, C. Maresca, U. Bernabucci, J.B. Gaughan, A. Nardone, and N. Lacetera. 2020. J. Dairy Sci. 103(9):8378-8387.

Wilson, D.J., J. Stojkov, D. L. Renaud, and D. Fraser. 2020. Short communication: Condition of male dairy calves at auction markets. J. Dairy Sci. 103(9):8530-8534.


New Study: Utilizing Genomic Selection as a Risk Management Tool

Authors: Allison Herrick, Ph.D. student in Animal Sciences, WSU

Dr. Holly Neibergs, Professor in Animal Sciences, WSU

The Western Sustainable Agriculture Research and Education (WSARE) program is a competitive research and education program that covers the western United States. Investigators at Washington State University (Holly Neibergs, Shannon Neibergs and Amber Adams-Progar) and the University of Idaho (Joseph Dalton) recently received funding from WSARE to determine if the use of genomic selection improves  the selection of replacement heifers as measured by their first lactation performance and their profitability. The study is being conducted at four Washington and two Idaho dairies, with each dairy providing information and samples on about 200 heifers. The study focuses on the dairy industry because it plays key economic and social roles throughout Washington and Idaho. As dairies have experienced significant financial challenges in recent years, it is imperative to reduce costs and financial risks to achieve the returns needed for producers to support themselves and their families. Genomic selection utilizes genotyping of cattle, which provides an opportunity to raise higher quality replacements, reduce the total number of replacements needed to maintain herd size, and identify the best animals to be used to produce optimal offspring for the next generation. Genotyping is the technology of sampling cattle DNA and using that information to predict how that animal will perform as a lactating adult. By examining the costs surrounding taking and processing the samples and then implementing the results, the cost-effectiveness of the process and the overall benefit for producers will be determined.

The words “genomic selection” or “genomics” have become more commonly mentioned within recent years in the dairy industry. However, many people do not fully understand what this technology does or what it has the potential to provide for them. The education portion of the study facilitates discussion of the opportunities genomic selection can provide. Producer and veterinarian education workshops will be held in Washington and Idaho where attendees can try their hand using genomic selection and selection based on relative or pedigree information to pick the most profitable heifers. Students at WSU will also compare selection strategies using these data. Examples from this project will be used in classes to help them better understand how genomics can increase the accuracy of estimating heifer performance while  reducing financial risk.

The 1200 heifers sampled in the study will be followed through their first lactation and comparisons will be made between their actual production and their predicted performance using the two different approaches. The reduction of financial risk will be measured by comparing the profitability of heifers chosen as replacements  using pedigree information to heifers chosen as replacements  using genomic information. If the use of genomic selection improves the accuracy of choosing heifers that will be profitable in the milking parlor, then genomic selection can be used as a tool to reduce financial risk for dairies. The selection of better heifers will also benefit the dairies in the long-run, as their calves will also carry the genetics to be more profitable leading to increased profitability and sustainability in the future.


Beef semen: A summary of its use on dairy cows

Authors: Jessica Pereira, PhD student in Animal Sciences, WSU

Dr. Marcos I. Marcondes, Assistant Professor in Animal Sciences, WSU

Dr. Fernanda Carolina Ferreira, UCCE Herd Health & Management Economist Specialist, UC Davis

The use of beef semen on dairy cows is increasing in the last years mainly due to the high premium price paid for dairy-beef crossbreds. This strategy is not new, and factors such as: (1) better reproductive performance; (2) high use of sexed semen; (3) milk price variation; (4) low surplus heifers’ price; (5) low dairy male and heifer prices; (6) high cost to raise heifers; and (7) high one-day-old dairy-beef crossbred price, are driving dairy farmers to adopt the use of beef semen on dairy cows.

The use of beef on dairies in Western – US DHIA herds, represented 0.3% of all breedings in 2015, and in 2019, the percentage increased to more than 26% of all breedings (Figure 1). Data from the National Association of Animal Breeders reported an increase in beef semen sales with 4.7 million doses (Angus, Simmental, Limousin, and others) from 2017 to 2020, and a decrease to 4.8 million doses from the sale of dairy semen sales (Holstein, Jersey, Red Holstein, Brow Swiss, and others). Likewise, the heifer calves and bull calves price experienced a reduction from $250 to less than $50 for heifers and from $200 to $15 for bulls from 2015 to 2021, a decline of 80% and 97%, respectively.

Results from a beef semen survey mailed in California (2020), reported that most dairy producers are using beef semen in third and older lactating dairy cows and on their third and higher breedings. Angus semen was the most used, and the Angus-dairy day-old calves had the greatest variation in their market price, from less than $50 to more than $250. Therefore, the beef semen fertility, calf management after birth (providing high-quality colostrum, in a few hours of life, with a good volume and evaluating navel disinfection), and a contract with calf ranch/feedlots, may be important factors to keep the premium price paid for dairy-beef crossbred calves. Also, beef semen use is an opportunity tool to control heifer inventory, improve genetic gain, increase the use of sexed semen in genetically superior heifers and use of beef semen use in repeated breeders and cows genetically inferior. This is especially important in a scenario with low milk and heifer prices. Furthermore, controlling heifer inventory reduces the environmental footprint of dairy production, reducing methane emissions.

There are many strategies that dairy producers can combine to use beef semen to maximize their profits.  Good records (which include mortality, longevity, reproductive performance, heifer raising costs, and the number of replacement heifers) and understanding the market price for surplus heifers, heifers calves, bull calves, and dairy-beef crossbred calves are crucial to make the best decisions for your farm.

Figure 1.  Percentage of beef, conventional dairy and sexed dairy semen used in Holstein dairy herds in Western – US, from 2015 to 2019 (CA, WA, OR, ID and NM).


WSU Dairy Club: Udderly Excited for a New Year and new opportunities!

Author: Kaitlyn Wright, WSU Dairy Club President 

The WSU Dairy Club is a student-run organization that aims to expand the knowledge of the dairy industry and its contribution to the human health and agricultural world. We believe that teaching individuals from any background issues and topics pertaining to the dairy industry generates future scientists, workforce and creates a positive image that can be brought to the community. The members of our club develop a better understanding of the industry through workshops, guest lectures, field trips, and hands-on experiences. Workshops include many things such as discussing marketing strategies, developing a resume and job application profile, working directly with calves and mature cows to provide more animal experience to our students. Members can learn various topics, from reproduction, genetics, health, husbandry to nutrition, to cow-calf care, and milk processing. Members also have the opportunity to develop leadership skills in things such as running for officer positions or planning and leading events. The objective for this year is to reactivate and make a positive contribution to the industry and club through fundraisers, and attending seminars and conferences. These conferences include the Washington Dairy Conference to inform local dairymen/women, business owners, veterinarians, and industry representatives of our club and our activities. The Dairy Club has the honor of hosting annual events such as Cougar Youth Weekend, which allows children K-12 across the country to tour the WSU Dairy and participate in educational workshops, games, and even learning how to fit, show, and halter train calves. Other events such as Dairy Olympics allows for WSU students and the local community to get involved in similar activities and have fun playing games all while learning the positive impact and importance of the industry.

The Dairy Club hopes to see you soon at the 2021 Washington State Dairy Conference!


WSU Cooperative University Dairy Students (CUDS) Ready to Thrive in 2021-2022

Author: Dr. Amber Adams Progar, WSU CUDS Advisor

The 2021-2022 academic year is off to a great start for the WSU CUDS Program. Besides managing the herd, the 13-member co-op is currently focused on scheduling field trips, guest speakers, and team-building events. Recruitment for the next cohort of members has also begun. Applications for CUDS opened on September 13th and will close on October 29th. As part of the recruitment process, CUDS members shared their experiences with fellow students at the WSU Animal Sciences Welcome Back BBQ and the WSU CAHNRS Fall Festival. The group looks forward to all the opportunities Fall 2021 will offer and is excited to welcome new members in January 2022.